
First-Order Logic over Linear Type Theory

Reuben Hillyard

2024



Overview

1 Motivation

2 Linear Type Theory

3 First-Order Logic

4 Examples



1 Motivation

2 Linear Type Theory

3 First-Order Logic

4 Examples



Set-up

• A first-order theory T;

• A category C definable in T;
• Just as a definable set gives a functor Mod(T) → Set,
we get a pseudofunctor C (−) : Mod(T) → Cat;

• We would like to produce a theory T′ extending T,
with forgetful functor U : Mod(T′) → Mod(T),
such that the fibre U−1(M) over a T-model M is C (M).
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First Attempt

Idea

Just extend T with a constant symbol of type C0.

• This has U−1(M)0 ∼= C0(M);

• But U−1(M)(X ,Y ) ∼= [X = Y ] ≇ C (M)(X ,Y ).

Intuition

This fails because Mod cannot see that C is a category.
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Intuition

Mod only knows about the morphisms in Set;
so we must encode objects of C in terms of sets.

Slogan

To encode objects in terms of sets: Yoneda lemma.



Yoneda Embedding

Idea

We will represent an object X of C by its representable functor
C (−,X ) : C op → Set.

Extend T with:

• a sort F ;

• a function π : F → C0;

• a partial function ρ : F × C1 ⇀ F ;

• ρ(x , f ) is defined iff π(x) = t(f );

• π(ρ(x , f )) = s(f );

• ρ(x , idπ(x)) = x ;

• ρ(x , g ◦ f ) = ρ(ρ(x , g), f );

• ∃θ ∈ F : ∀x ∈ F : ∃!x ′ ∈ C1 : ρ(θ, x
′) = x .

This works – we get U−1(M) ∼= C (M).
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Summary

• We had a definable category C ;

• Mod did not treat C correctly
until we phrased it in terms of Set.

Problem

This makes essential use of Set; so it only works for categories.
We could not do this for higher categories, R-modules, etc..
Mod(T) is always an ordinary category.
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• Replace Set with a category of our choice.

• More specifically, replace (Set,×, {⋆}) with a symmetric
monoidal category of our choice.

• The eventual goal is an enriched logic.
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Linear Type Theory

Braid-⊗
Γ, r : Y ⊗ Z , x : X ,∆ ⊢ e : E

Θ ⊢ s : X Φ ⊢ t : Y Ψ ⊢ u : Z

Γ,Θ,Φ,Ψ,∆ ⊢ let r ⊗ x = σ(s ⊗ (t ⊗ u)) in e ≡
let y ⊗ x ′ = σ(s ⊗ t) in let z ⊗ x = σ(x ′ ⊗ u) in e[y ⊗ z/r ] : E



Linear Type Theory

Empty-ctx

· ctx

Extended-ctx
Γ ctx X type

Γ, x : X ctx

Variable
X type

x : X ⊢ x : X

For each sort symbol X , and function symbol f : (X1, . . . ,Xn) → Y ,

Sort

X type

Function
Γ1 ⊢ s1 : X1 · · · Γn ⊢ sn : Xn

Shuf([Γ1; . . . ; Γn];∆)

∆ ⊢ f (s1, . . . , sn) : Y
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First-Order Logic

Empty-mtx

• mtx

Extended-mtx
Ξ mtx Γ ctx

Ξ; Γ mtx

Term-mtx
Γ1 ctx · · · Γn ctx Γi ⊢ s : Z

Γ1; . . . ; Γn ⊢ ⟨s⟩i : Z
(1 ≤ i ≤ n)



First-Order Logic

Truth-form
Ξ mtx

Ξ ⊢ ⊤ prop

Conjunction-form
Ξ ⊢ ϕ prop Ξ ⊢ ψ prop

Ξ ⊢ ϕ ∧ ψ prop

Disjunction-form
Ξ mtx Ξ ⊢ ϕj prop for j ∈ J

Ξ ⊢
∨
j∈J

ϕj prop
(J a set)

Equality-form
Ξ ⊢ s : Z Ξ ⊢ t : Z

Ξ ⊢ s
.
=Z t prop

∃-form
Ξ; Γ;Ω ⊢ ϕ prop

Ξ;Ω ⊢ (∃Γ)ϕ prop

∃new-form
Ξ; (Γ, x : X ,∆);Ω ⊢ ϕ prop

Ξ; (Γ,∆);Ω ⊢ (∃new x : X )ϕ prop



First-Order Theories

For each relation symbol R(Z1; . . . ;Zn),

Relation
Ξ ⊢ s1 : Z1 · · · Ξ ⊢ sn : Zn

Ξ ⊢ R(s1; . . . ; sn) prop

Theories can have axioms of the form Γ1; . . . ; Γn|ϕ1; . . . ;ϕm ⊢ ψ.
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Monoids and Groups

The theory M of a monoid has:

• one sort symbol G ;

• function symbols m : (G ,G ) → G ; e : () → G ;

• axioms:

x : G , y : G , z : G ⊢ m(m(x , y), z)
.
= m(x ,m(y , z))

x : G ⊢ m(x , e())
.
= x x : G ⊢ m(e(), x)

.
= x

x : G ; · ⊢ (∃new y : G ) m(x , y)
.
= e()
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Toposes

• From a topos E , we get a monoidal topos (E ,×, 1).

• Since ⊗ = ×, we are in the usual situation:

M-mod(E) ∼= Mon(E) G-mod(E) ∼= Grp(E)

• In particular,

M-mod([C op,Set]) ∼= Mon([C op,Set]) ∼= [C op,Mon]

G-mod([C op,Set]) ∼= Grp([C op,Set]) ∼= [C op,Grp]
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Graded Sets

From a (commutative) monoid M,
we get a (symmetric) monoidal topos Set/M with:

1

I =

M

e

X Y X × Y

⊗ = M ×M

M M M

ϕ ψ

ϕ× ψ

m

M-mod(Set/M) ∼= Mon/M G-mod(Set/M) ↪→ Mon/M
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Z2-Graded Sets

A familiar special case is Z2-graded sets with:

I = ({⋆},∅)

(XE ,XO)⊗ (YE ,YO) = (XE ×YE +XO ×YO , XE ×YO +XO ×YE )

Split Complex Numbers: R[j ]

Pairs of real numbers with:

1 = 1 + 0j

(xE + xO j) · (yE + yO j) = (xEyE + xOyO) + (xEyO + xOyE )j
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Complex Numbers and Dual Numbers

Complex Numbers: R[i ]

Pairs of real numbers with:

1 = 1 + 0i

(xE + xO i) · (yE + yO i) = (xEyE − xOyO) + (xEyO + xOyE )i
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Complex Numbers and Dual Numbers

Dual Numbers: R[ε]

Pairs of real numbers with:

1 = 1 + 0ε

(xE + xOε) · (yE + yOε) = (xEyE ) + (xEyO + xOyE )ε



Dual Sets

Dual Sets: Set[ε]

Pairs of sets with:

I = ({⋆},∅)

(XE ,XO)⊗ (YE ,YO) = (XE × YE , XE × YO + XO × YE )

M-mod(Set[ε]) ∼= {(G ,X ) for G : Mon; X : G -G -BiMod}

C-mod(Set[ε]) ∼= {(G ,X ) for G : CMon; X : G -Mod}

G-mod(Set[ε]) ∼= {(G ,∅) for G : Grp}

O-mod(Set[ε]) ∼= {(G ,X ) for G : O-mod; X : G -Mod}
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Next Steps

• Proof system; ∃new.
• Semantics; Multi-toposes; Classification.

• (Bunched) Type Theory.

• Restore the enrichment.

• Relation to Quantales and Quantum Logic.
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