First-Order Logic over Linear Type Theory

Reuben Hillyard

2024

@ Motivation
@® Linear Type Theory
© First-Order Logic

O Examples

@ Motivation

® A first-order theory T;

® A first-order theory T;
® A category C definable in T;

® A first-order theory T;
® A category C definable in T;

e Just as a definable set gives a functor Mod(T) — Set,
we get a pseudofunctor C(—) : Mod(T) — Cat;

A first-order theory T;
® A category C definable in T;

Just as a definable set gives a functor Mod(T) — Set,
we get a pseudofunctor C(—) : Mod(T) — Cat;

We would like to produce a theory T’ extending T,
with forgetful functor U : Mod(T’) — Mod(T),
such that the fibre U~1(M) over a T-model M is C(M).

First Attempt

Just extend T with a constant symbol of type Cp.

First Attempt

Just extend T with a constant symbol of type Cp.

e This has U~1(M)g = Co(M);

First Attempt

Just extend T with a constant symbol of type Cp.

® This has U71(M)g = CGo(M);
® But UTY(M)(X,Y)2[X = Y] C(M)(X,Y).

Just extend T with a constant symbol of type Cp.

® This has U71(M)g = CGo(M);
® But UTY(M)(X,Y)2[X = Y] C(M)(X,Y).

This fails because Mod cannot see that C is a category.

Encoding Objects

Mod only knows about the morphisms in Set;
so we must encode objects of C in terms of sets.

Encoding Objects

Mod only knows about the morphisms in Set;
so we must encode objects of C in terms of sets.

To encode objects in terms of sets, you need a lemma.

Encoding Objects

Mod only knows about the morphisms in Set;
so we must encode objects of C in terms of sets.

To encode objects in terms of sets: Yoneda lemma.

Yoneda Embedding

We will represent an object X of C by its representable functor
C(—,X): C°P — Set.

Yoneda Embedding

We will represent an object X of C by its representable functor
C(—,X): C°P — Set.

Extend T with:

Yoneda Embedding

We will represent an object X of C by its representable functor
C(—,X): C°P — Set.

Extend T with:
® asort F;
® 3 function 7 : F — Cg;
® a partial function p: F x (3 — F;

Yoneda Embedding

We will represent an object X of C by its representable functor
C(—,X): C°P — Set.

Extend T with:

® asort F;

® 3 function 7 : F — Cg;

® a partial function p: F x (3 — F;
p(x,) is defined iff w(x) = t(f);
m(p(x, f)) = s(f);
o
o

X, idr () = X;

x,g o f)=p(p(x,8),f);

Yoneda Embedding

We will represent an object X of C by its representable functor
C(—,X): C°P — Set.

Extend T with:
® asort F;
® 3 function 7 : F — Cg;
® a partial function p: F x (3 — F;
p(x, f) is defined iff w(x) = t(f);
w(p(x, F)) = s(f);
* p(x,idr(x) = x;
p(x,g 0 f)=p(p(x,g),f);
30 e F:Vxe F:3IX' € Ci: p(0,x) = x.

Yoneda Embedding

We will represent an object X of C by its representable functor
C(—,X): C°P — Set.

Extend T with:
® asort F;
® 3 function 7 : F — Cg;
® a partial function p: F x (3 — F;
p(x, f) is defined iff w(x) = t(f);
w(p(x, £)) = s(F);
* p(x,idr(x) = x;
p(x,g 0 f)=p(p(x,g),f);
e Jhe F:Vxe F:3X e C:p(h,x) = x.
This works — we get U~1(M) = C(M).

® We had a definable category C;

® We had a definable category C;

® Mod did not treat C correctly
until we phrased it in terms of Set.

Summary

® We had a definable category C;

® Mod did not treat C correctly
until we phrased it in terms of Set.

Problem

This makes essential use of Set; so it only works for categories.
We could not do this for higher categories, R-modules, etc..
Mod(T) is always an ordinary category.

Solution Idea

® Replace Set with a category of our choice.

Solution Idea

® Replace Set with a category of our choice.

® More specifically, replace (Set, x, {x}) with a symmetric
monoidal category of our choice.

Solution Idea

® Replace Set with a category of our choice.

® More specifically, replace (Set, x, {x}) with a symmetric
monoidal category of our choice.

® The eventual goal is an enriched logic.

@ Linear Type Theory

Linear Type Theory

Braid-®
Mr:YeZx: X, AFe: E
OFs: X ot Y Viku:Z
re,o,VArletreax=o0(s®(t®u))ine=
let y@x' =o(s®@t)inlet z@x =0(x' ®u) inely®z/r]: E

Linear Type Theory

Extended-ctx Variable
[ctx X type X type

- Cctx Mx: X ctx x: XEx: X

Empty-ctx

Linear Type Theory

Emptv_ct Extended-ctx Variable
MpLy-cix I ctx X type X type
- Cctx Mx: X ctx x: XEx: X

For each sort symbol X,

Sort

X type

Linear Type Theory

Emptv_ct Extended-ctx Variable
MpLy-cix I ctx X type X type
- Cctx Mx: X ctx x: XEx: X

For each sort symbol X, and function symbol f : (Xq,...,X,) = Y,

Function
MEs:X © Tabsn: Xy
Sort Shuf([F1;...;Tn);)

X type At f(s1y...,5n):

Linear Type Theory

Emptyv-ct Extended-ctx Variable
mpty-ctx [ctx X type X type
- ctx IHx: X ctx x: XFx: X

For each sort symbol X, and function symbol f : (X3,...,X,) = Y,

Function

Sort Mbsi: Xy - Tobsy:X,
X type Fi;..;iTnkf(s1,...,50): Y

© First-Order Logic

First-Order Logic

Extended-mtx

Empty-mix = mtx [ctx
e mtx = [mtx
Term-mtx
M ctx [, ctx Mks:Z

1<i<
M. TnF(s);:Z (<i<n)

First-Order Logic

Truth-form Conjunction-form
= mtx =F ¢ prop =F ¢ prop
=F T prop =+ ¢ A1 prop

Disjunction-form
= mtx =F ¢j prop forjeJ

=+ \/qﬁj prop

Jjed

(J a set)

Equality-form

=Fks:Z =tt: 7
=k s=ztprop
I-form Jpeu-form
=1 QF ¢ prop =i (T, x: X, A), Q2 F ¢ prop

=, Q1 (3r)¢ prop = (M A);QE (Frew x 1 X)¢ prop

First-Order Theories

Relation
=ks: 4 =Fs,: Z,

=F R(s1;...;sn) prop

First-Order Theories

Relation
=ks: 4 =Fs,: Z,

=F R(s1;...;sn) prop

Theories can have axioms of the form I'y;...;Tp|é1;...; ¢m E 2.

O Examples

Monoids and Groups

The theory M of a monoid has:
® one sort symbol G;
e function symbols m: (G,G) — G; e: () — G;

® axioms:

x:G,y:G,z: GFm(m(x,y),z) = m(x,m(y, z))

x:GFm(x,e()) =x x:GFm(e(),x)=x

Monoids and Groups

The theory G of a group has:
® one sort symbol G;
e function symbols m: (G,G) — G; e: () — G;

® axioms:

x:G,y:G,z: GFm(m(x,y),z) = m(x,m(y, z))
x:GFm(x,e()) =x x:GFm(e(),x)=x

x:G; F (Ghew y: G) m(x,y) =e()

® From a topos &, we get a monoidal topos (&, x, 1).

® From a topos &, we get a monoidal topos (&, x, 1).

® Since ® = X, we are in the usual situation:

M-mod(€) = Mon(€) G-mod(&) = Grp(€)

® From a topos &, we get a monoidal topos (&, x, 1).

® Since ® = X, we are in the usual situation:
M-mod(€) = Mon(€) G-mod(&) = Grp(€)
® In particular,
M-mod([C°P, Set]) = Mon([C°P, Set]) = [C°P, Mon]

G-mod([CP, Set]) = Grp([CP, Set]) = [C°, Grp]

Graded Sets

From a (commutative) monoid M,
we get a (symmetric) monoidal topos Set, with:

1 X Y XxY
|oxw
= e 0®R (b= Mxm

,\lﬂm

M M M

Graded Sets

From a (commutative) monoid M,
we get a (symmetric) monoidal topos Set, with:

1 X Y XxY
|oxw
= e 0®R (b= Mxm

,\lﬂm

M-mod(Set /) = Mon G-mod(Set) — Mon

M M M

Z»-Graded Sets

A familiar special case is Zy-graded sets with:
I'=({+},9)
(XE,X0)®(YE, Yo) = (XE X Ye+Xo X Yo, Xe x Yo+ Xo X YE)

Z»-Graded Sets

A familiar special case is Zy-graded sets with:
I'=({+},9)
(XE,X0)®(YE, Yo) = (XE X Ye+Xo X Yo, Xe x Yo+ Xo X YE)

Split Complex Numbers: R[j]

Pairs of real numbers with:

1=1+0j

(xe + xo0J) - (Ye + yoj) = (xeye + xoyo) + (xeyo + xoyE)j

Complex Numbers and Dual Numbers

Complex Numbers: R[]

Pairs of real numbers with:

1=1+0i

(xe + xo0i) - (e + yoi) = (xeye — xoyo) + (xeyo + xoyE)i

Complex Numbers and Dual Numbers

Complex Numbers: R[]

Pairs of real numbers with:

1=1+0i

(xe + xoi) - (Ye + yoi) = (xeye — xoyo) + (xeyo + xoye)i

Complex Numbers and Dual Numbers

Dual Numbers: R]e]

Pairs of real numbers with:

1=1+0¢

(xe + xo¢) - (Y + yoe) = (xeye) + (xeyo + xoye)e

Dual Sets

Dual Sets: Set][e]

Pairs of sets with:

I = ({x},9)
(XE7X0) ® (YE, Yo) = (XE X Yg, Xg x Yo + Xo % YE)

Dual Sets

Dual Sets: Set][e]

Pairs of sets with:

I = ({x},9)
(XE7X0) ® (YE, Yo) = (XE X Yg, Xg x Yo + Xo % YE)

M-mod(Set[¢]) = {(G, X) for G : Mon; X : G-G-BiMod}
C-mod(Set[e]) = {(G, X) for G: CMon; X : G-Mod}
G-mod(Set[¢]) = {(G,2) for G : Grp}

O-mod(Set[¢]) = {(G, X) for G : O-mod; X : G-Mod}

Proof system; Jyey.
® Semantics; Multi-toposes; Classification.
(Bunched) Type Theory.

Restore the enrichment.

Relation to Quantales and Quantum Logic.

	Motivation
	Linear Type Theory
	First-Order Logic
	Examples

