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A first-order theory T;
® A category C definable in T;

Just as a definable set gives a functor Mod(T) — Set,
we get a pseudofunctor C(—) : Mod(T) — Cat;

We would like to produce a theory T’ extending T,
with forgetful functor U : Mod(T’) — Mod(T),
such that the fibre U~1(M) over a T-model M is C(M).
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Just extend T with a constant symbol of type Cp.

® This has U71(M)g = CGo(M);
® But UTY(M)(X,Y)2[X = Y] C(M)(X,Y).

This fails because Mod cannot see that C is a category.




Encoding Objects

Mod only knows about the morphisms in Set;
so we must encode objects of C in terms of sets.



Encoding Objects

Mod only knows about the morphisms in Set;
so we must encode objects of C in terms of sets.

To encode objects in terms of sets, you need a lemma.




Encoding Objects

Mod only knows about the morphisms in Set;
so we must encode objects of C in terms of sets.

To encode objects in terms of sets: Yoneda lemma.
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Yoneda Embedding

We will represent an object X of C by its representable functor
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Extend T with:
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® 3 function 7 : F — Cg;
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Yoneda Embedding

We will represent an object X of C by its representable functor
C(—,X): C°P — Set.

Extend T with:
® asort F;
® 3 function 7 : F — Cg;
® a partial function p: F x (3 — F;
p(x, f) is defined iff w(x) = t(f);
w(p(x, £)) = s(F);
* p(x,idr(x) = x;
p(x,g 0 f)=p(p(x,g),f);
e Jhe F:Vxe F:3X e C:p(h,x) = x.
This works — we get U~1(M) = C(M).
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Summary

® We had a definable category C;

® Mod did not treat C correctly
until we phrased it in terms of Set.

Problem

This makes essential use of Set; so it only works for categories.
We could not do this for higher categories, R-modules, etc..
Mod(T) is always an ordinary category.
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Solution Idea

® Replace Set with a category of our choice.

® More specifically, replace (Set, x, {x}) with a symmetric
monoidal category of our choice.

® The eventual goal is an enriched logic.
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Linear Type Theory

Braid-®
Mr:YeZx: X, AFe: E
OFs: X ot Y Viku:Z
re,o,VArletreax=o0(s®(t®u))ine=
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Linear Type Theory

Emptv_ct Extended-ctx Variable
MpLy-cix I ctx X type X type
- Cctx Mx: X ctx x: XEx: X

For each sort symbol X, and function symbol f : (Xq,...,X,) = Y,

Function
MEs:X © Tabsn: Xy
Sort Shuf([F1;...;Tn); )

X type At f(s1y...,5n):




Linear Type Theory

Emptyv-ct Extended-ctx Variable
mpty-ctx [ ctx X type X type
- ctx IHx: X ctx x: XFx: X

For each sort symbol X, and function symbol f : (X3,...,X,) = Y,

Function

Sort Mbsi: Xy - Tobsy:X,
X type Fi;..;iTnkf(s1,...,50): Y
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First-Order Logic

Extended-mtx

Empty-mix = mtx [ ctx
e mtx = [ mtx
Term-mtx
M ctx [, ctx Mks:Z

1<i<
M. TnF(s);:Z (<i<n)



First-Order Logic

Truth-form Conjunction-form
= mtx =F ¢ prop =F ¢ prop
=F T prop =+ ¢ A1 prop

Disjunction-form
= mtx =F ¢j prop forjeJ

=+ \/qﬁj prop

Jjed

(J a set)

Equality-form

=Fks:Z =tt: 7
=k s=ztprop
I-form Jpeu-form
=1 QF ¢ prop =i (T, x: X, A), Q2 F ¢ prop

=, Q1 (3r)¢ prop = (M A);QE (Frew x 1 X)¢ prop
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First-Order Theories

Relation
=ks: 4 =Fs,: Z,

=F R(s1;...;sn) prop

Theories can have axioms of the form I'y;...;Tp|é1;...; ¢m E 2.
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The theory M of a monoid has:
® one sort symbol G;
e function symbols m: (G,G) — G; e: () — G;

® axioms:
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Monoids and Groups

The theory G of a group has:
® one sort symbol G;
e function symbols m: (G,G) — G; e: () — G;

® axioms:

x:G,y:G,z: GFm(m(x,y),z) = m(x,m(y, z))
x:GFm(x,e()) =x x:GFm(e(),x)=x

x:G; F (Ghew y: G) m(x,y) =e()
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® From a topos &, we get a monoidal topos (&, x, 1).

® Since ® = X, we are in the usual situation:
M-mod(€) = Mon(€) G-mod(&) = Grp(€)
® In particular,
M-mod([C°P, Set]) = Mon([C°P, Set]) = [C°P, Mon]

G-mod([CP, Set]) = Grp([CP, Set]) = [C°, Grp]
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Graded Sets

From a (commutative) monoid M,
we get a (symmetric) monoidal topos Set, with:

1 X Y XxY
|oxw
= e 0®R (b= Mxm

,\lﬂm

M-mod(Set /) = Mon G-mod(Set ) — Mon

M M M
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Z»-Graded Sets

A familiar special case is Zy-graded sets with:
I'=({+},9)
(XE,X0)®(YE, Yo) = (XE X Ye+Xo X Yo, Xe x Yo+ Xo X YE)

Split Complex Numbers: R[j]

Pairs of real numbers with:

1=1+0j

(xe + xo0J) - (Ye + yoj) = (xeye + xoyo) + (xeyo + xoyE)j



Complex Numbers and Dual Numbers
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Complex Numbers: R[]

Pairs of real numbers with:

1=1+0i

(xe + xoi) - (Ye + yoi) = (xeye — xoyo) + (xeyo + xoye)i



Complex Numbers and Dual Numbers

Dual Numbers: R]e]

Pairs of real numbers with:

1=1+0¢

(xe + xo¢) - (Y + yoe) = (xeye ) + (xeyo + xoye)e



Dual Sets

Dual Sets: Set][e]

Pairs of sets with:

I = ({x},9)
(XE7X0) ® (YE, Yo) = (XE X Yg, Xg x Yo + Xo % YE)



Dual Sets

Dual Sets: Set][e]

Pairs of sets with:

I = ({x},9)
(XE7X0) ® (YE, Yo) = (XE X Yg, Xg x Yo + Xo % YE)

M-mod(Set[¢]) = {(G, X) for G : Mon; X : G-G-BiMod}
C-mod(Set[e]) = {(G, X) for G: CMon; X : G-Mod}
G-mod(Set[¢]) = {(G,2) for G : Grp}

O-mod(Set[¢]) = {(G, X) for G : O-mod; X : G-Mod}



Proof system; Jyey.
® Semantics; Multi-toposes; Classification.
(Bunched) Type Theory.

Restore the enrichment.

Relation to Quantales and Quantum Logic.
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