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Introduction

Spaces are an important object of study in mathematics. The class of spaces we will
focus on is homotopy types: topological spaces considered up to weak homotopy
equivalence. Homotopy types are significant to higher category theorists since the
homotopy hypothesis identifies homotopy types with oo-groupoids. (Deflorin 2019,
Theorem 9.2)

Many models of co-groupoids involve complicated combinatorics (Lurie 2009, Sub-
section A.2.7 and Definition 1.1.2.1), and whatever model of homotopy types or
oo-groupoids we choose, we must take care that all our constructions respect equi-
valences appropriately.

We can escape the bureaucracy associated with having chosen a specific model by
working synthetically in Homotopy Type Theory (HoTT) (Univalent Foundations
Program 2013). That is, we axiomatise the properties that homotopy types enjoy
rather than working from an explicit description. In HoTT, the equality types natur-
ally endow every type with the structure of an oco-groupoid, and every construction
we can perform internally automatically preserves this structure (Riley, Finster and
Licata 2021, p. 2). Whatever model of oco-groupoids we choose, we establish once
and for all that it is a model of HoT'T, whereafter we can prove theorems in HoTT
and they will apply to our model. Not only is it hopefully simpler to work in HoTT,
but theorems proven in HoTT apply to all models at once; so we do not need to
prove the same results over and over for different models.

An advantage of working in type theory is that terms have computational content;
so, many equalities are judgmental and can be verified by a proof assistant, rather
than requiring proof terms. In HoTT, however, we have the univalence axiom.
Axioms in type theory obstruct computation: they are terms without rules spe-
cifying their computational behavior. Thus, while univalence is useful for synthetic
homotopy theory, in HoTT it comes at the cost of losing desirable computational
properties such as canonicity. In (Cohen et al. 2018), they introduce Cubical Type
Theory (CuTT), where we regain canonicity (Huber 2019), and univalence becomes
a theorem, provable from the new primitives we are given.

In algebraic topology, we study spaces by means of their algebraic invariants. In
HoTT, we can define the homotopy groups and work with them synthetically. The
definitions of homology and cohomology groups in terms of simplices, however, do



not work, but they can be defined by the spectra that represent them. (Riley,
Finster and Licata 2021, p. 2) In (Riley, Finster and Licata 2021), they present an
extension of HoTT to handle spectra. Their type theory has axioms, and these,
like univalence, prevent computation. In this dissertation, we will work towards
Stable Type Theory (StabTT), which seeks to give computational content to the
type theory of (Riley, Finster and Licata 2021) as CuTT does for HoTT.

In Sections 1 and 2, we introduce HoTT and CuTT. In Section 3, we familiarise
ourselves with working in CuTT by making definitions and proving a lemma that
we need later on. In Section 4, we discuss stable oco-categories. In Section 5, we
work towards presenting StabTT. In Section 6, we adapt a method that (Riley,
Finster and Licata 2021) use to obtain stability. In Section 7, we discuss what work
is needed in the future.

1 Homotopy Type Theory

Homotopy Type Theory is Martin-Lof Type Theory with intensional equality types,
univalence, and higher inductive types. (Univalent Foundations Program 2013)

1.1 Martin-Lof Type Theory

In Martin-Lof Type Theory (Martin-Lof 1975), there are terms, which denote pieces
of data, every term has a type, which tells us what we can do with the data, and
terms and types exist in contexts, which list the resources available for us to use.

The presentation of Martin-Lof Type Theory can be broken into two pieces. First,
we give rules that explain how the judgments are related, and, second, we define our
type-formers.

1.1.1 Judgments
In Martin-Lof Type Theory, we have the following judgments:
e [' ctx — well-formed context;
e I'H A type — well-formed type in a context;
e ' A= B type — judgmentally equal types;
e 'Fa: A - well-typed term in a context;
e 'a=b:A-judgmentally equal terms.

And we have inference rules to derive these judgments from each other.



Contexts are lists of typed variables. The types of the later variables may depend
on the values of the earlier variables. We have two context-forming operations.

B C EXTENDED CONTEXT
MPTY CONTEXT Tk A type

- ctx I''a: A ctx

We have one special term-forming operation — the variable rule — and the rest come
from the universal properties of the types we will add to the system. The variable
rule says that if we have a resource in our context, we may use it as data of the type
we assumed it to have.

VARIABLE
Ia: AT ctx

Fa:AT'Fa: A

Judgmental equalities of types and terms arise in three ways:

e we have rules expressing that judgmental equality is reflexive, symmetric and
transitive;

e for each type- or term-forming operation, we have a corresponding rule ex-
pressing that the operation preserves judgmental equality;

e types will typically have computation and uniqueness rules in the form of
judgmental equalities.

1.1.2 Type-Formers

Each type-former represents some universal construction we want to perform in the
category of types.

To present a type-former, we must give the following rules:
e formation — What data is the input to the type-former?
e introduction — How can we make values of the types?
e climination — How can we use values of the types?
e computation — What happens when we use a value we just made?

e uniqueness — Some types have a uniqueness rule, which corresponds to the
uniqueness part of their universal property. This rule tells us that taking
a value apart and putting it back together again gets us back to where we
started.

Often a type-former will have a mapping-in universal property, and we call them
negative, or a mapping-out universal property, positive. Positive types tend to have
eliminators that resemble the match construct from programming languages such as



Rust (Klabnik and Nichols 2022, Section 6.2), whereas negative types have elimin-
ators that simply extract data, similar to accessing a field of an object. Some types,
such as the unit type and dependent sum types, admit presentations as positive and
negative types.

Example 1.1 (Negative Dependent Sum Types). The elements of dependent sum
— Y — types are pairs where the type of the second component may depend on the
value of the first. The data required to form a ¥ type are the type A of the first
component together with the type B(a) of the second component depending on the
value a : A of the first.

>-FORM
I'Na: AF B type

' > B type
a:A

Dependent sum types have a mapping-in universal property: a map from I' to
> ua B is given by a map s from I' to A together with a map ¢ from I' to B[s/al,
where ‘[s/a]” denotes capture-avoiding substitution (Ker 2009). That is, a map is
determined by the values it produces for each component. Then the introduction
rule lets us assemble a term of type > ., B from parts, the elimination rule lets us
access the components, and the computation and uniqueness rules assert that these
operations are mutually inverse.

Y-INTRO SBLIM
I'a: AF B type ) _
'ks: A I'kt: Bls/al FFP'C%B
FI—(s,t):%B TFmp): A T+ mp): Blm(p)/d]
Y-COMP
I'a: AF B type E_UNIer_ B
'ks: A 'k t: B[s/al p-a:A
F'Em((s,t)=s: A I'E (m(p), m(p) =p: ZAB

['Fm((s,t)) =t: Bls/al
When B does not depend on a : A, we get the pair type A x B.

Example 1.2 (Negative Unit Type). The unit type represents the terminal object.
It has a mapping-in universal property: there is a unique map into the terminal
object. It takes no data to form the unit type 1. It takes no data to introduce a
term * : 1. If we have p : 1, then all we can do with it is discard it. The computation
rule says that if we start out with nothing, introduce * : 1 and discard it, then we
get back to where we started, which is vacuous. The uniqueness rule says that if we
have p : 1, discard it, and introduce * : 1, we are back where we started, that is,
every term of type 1 is judgmentally equal to * : 1.

1-FORM 1-INTRO 1-ELIM 1-comP 1-UNIQ
I ctx I ctx 'Ep:1 [ ctx 'Ep:1
I'E1 type 'Ex:1 'Ex=p:1



The 1-ELIM and 1-COMP rules are vacuous; so we can omit them.

Example 1.3 (Type of Booleans). The type B of booleans is an inductive type with
two constructors true, false : B.

B-FORM B-INTRO
I' ctx I ctx
I' =B type ' true: B I'-false:B

Inductive types have mapping-out universal properties and match-style eliminators.
In the world of dependent types, we do not just eliminate into a type, but a type
family — the motive — that depends on the scrutinee.

B-ELIM
[o:BF Z type ['Fs: Z[true/b| ['Ft: Z[false/D] 'kFp:B

'k if, 7 p then s else t: Z[p/b]

B-comP
[,b:BE Z type 'k s: Z[true/b] I'Ft: Z[false/D]

['F if, 7 true then s else t = s: Z[true/]
['F if,, false then s else t =t : Z[false/b)

We could add a uniqueness rule for B, but we tend to omit uniqueness rules for
inductive types since they make type-checking much harder and we will be able to
prove propositional uniqueness rules. (Angiuli and Gratzer 2024)

Example 1.4 (Dependent Product Types). The elements of dependent product —
IT — types are functions where the type of the result may depend on the value of the
argument. Dependent product types simultaneously generalise function types and
universal quantification.

I1-FORM II-INTRO ?I_EL;M [[B Tri: A
I'a: AF B type INa:AFs: B oA
Tl—gBtype Fl—)\a.s:ﬂB 'k st: B[t/d]
TI-comp H_UNII,Q}_ s I B
Ia:AFs: B FHt: A =y
I'F (Xa.s)t = s[t/a] : B[t/d] 'k Xa.sa =s: ]1[13

When B does not depend on a : A, we get the function type A — B.

Example 1.5 (Universe Types). The elements of the universe types U; are them-
selves types. For size reasons, we cannot have a type of all types (Angiuli and Gratzer
2024, Section 2.7); so we have a sequence of universe types, with each containing
the previous.



1.2 Intensional Equality Types

Inductive types are freely generated by constructors. For example, the natural num-
bers are generated by zero and succ. We can then define a map out of an inductive
type by pattern-matching on each of its constructors. With indexed inductive types,
we define a family of types by mutual induction. Then, to define maps out, we must
deal with all values of the indices together.

The textbook example of an indexed inductively defined family is vectors — lists of
a given length. For a fixed type A, we have a family of types Vec A n for n : N.
There are two constructors for vectors: nil, which makes an empty vector with type
Vec A zero, and cons, which takes a Vec A n and an A, and appends the element
to the end of the list to make a Vec A (succ n). To eliminate a vector, we must
pattern-match on n and our value of type Vec A n together.

Intensional equality types can also be seen as indexed inductive types. For a fixed
type A, we have a family of types a =4 b for a,b: A. We have a single constructor
refl, and, for a : A, refl, has type a =4 a. The intuition for this is that the ways
of being equal are freely generated by the rule that equality is reflexive.

=-FORM =-INTRO
'Fa:A '=b:A 'Fa:A
I'Fa=40type 'Frefl,:a=40a

To eliminate an equality, we need a type family C' depending on our indices a,b: A
and a variable p : @ =4 b, and we must pattern-match on a,b and our value of type
a =4 b together, with the single case that they are a,a and refl,. Sometimes the
elimination rule for equality types is called the J rule. (Warren 2008)

=-ELIM =-COMP
a:Ab: Ap:a=2bF C type Ma:Ab: Ap:a=,bF C type
Ia:AFc:Cla/b,refl,/p] I'Na: At c:Cla/b,refl,/p)
F'Fu:s=41 'Fs: A
I' F matchap.o (s,t,u) { I' F matchy.o (8, s, refly) {
(a,a,refl,) — c, (a,a,refl,) — c,
}:Cls/a,t/b,u/p] }=c[s/a] : C[s/a,s/b,refl/p]

As with B, we will not have a uniqueness rule; in particular we do not have unique-
ness of identity proofs, which would say, for p,q : a =4 b, it must be that p and ¢
are equal. It may seem odd that there could be more than one way for two values
to be equal, but this is just like two objects being isomorphic by more than one
isomorphism.

The homotopical perspective on intensional equality is to imagine types as spaces,
terms as points, and equalities as paths between them. Then unequal equality proofs
correspond to non-homotopic paths, whose existence is not so surprising. The J rule
allows us to concatenate and reverse equalities as coherently as we could for paths



Figure 1: Unequal terms p,q:a =4 b

in a space; so every type has an oco-groupoid structure (Berg and Garner 2011), and
we can think of types as homotopy types.

1.3 Univalence

For most of our type-formers, we can relate equality in the formed type to equality
in the input types. For example, two pairs are equal when their components are
equal. Intensional type theory is not sufficient to do this for the universe type; so
we will add an axiom. Then the question is: what do we want equality in U; to
be? In set theory, two sets are equal when they have all the same elements, but
this doesn’t reflect the way we do mathematics: we might say N C Q even if the
elements of N are not literally elements of Q. In category theory, we know that
the appropriate notion of ‘sameness’ for objects is isomorphism. We will add the
univalence axiom, which asserts that equality in /; is isomorphism of types, but in
line with the homotopical perspective, we will call isomorphisms equivalences, as in
‘homotopy equivalences’.

Defining what it means for a function to be an equivalence in HoTT is more subtle
than defining bijections in set theory; we want to ensure that ‘being an equivalence’
is a property, and not additional structure. (Univalent Foundations Program 2013,
Chapter 4) We take as our definition ‘admitting a left- and right-inverse’. This leads
to the definitions

f~g=]](fa) =5 g(a))

aA
isEquiv(f) = ( Z fogwidB) X < Z hofwidA)
g:B—A h:B—A
(A~ B) = Z isEquiv(f)
f:A—B



Whenever A, B are equal types, they are equivalent; so we have a term idtoeqv that
converts equalities to equivalences.

idtoeqv : (A =4, B) — (A~ B)
idtoeqv p = match (A4, B,p) {
(C,C,refle) — (ide, ((ide, Ac.refl,), (ide, Ac.refl,))),

}

We want equalities to be the same as equivalences; so we add an axiom ua of type
isEquiv(idtoeqv) asserting that idtoeqv is an equivalence. (Univalent Foundations
Program 2013)

1.4 Higher Inductive Types

Having adopted the homotopical perspective, we would like a way to construct types
with non-trivial higher homotopies. Higher inductive types generalise inductive
types by allowing constructors to produce equalities in addition to points.

Example 1.6 (Suspension). Fix a type A; then the suspension type 3A — not to
be confused with dependent sum — can be defined by

inductive YA where {
N: YA,
S: YA,
merid: A — N =x4 S,

}

To define a map out of 3 A, we must choose its values at N and S, and, for a : A, we
must choose an equality between those values. In HoT'T, the case of the computation
rule for merid is not a judgmental equality but an axiomatised propositional equality
(Univalent Foundations Program 2013, Chapter 6), leading to stuck terms. We do
not give YA a judgmental uniqueness rule, since it would not hold some of our
intended models, and a propositional uniqueness rule is provable.

2 Cubical Type Theory

In Cubical Type Theory, we reify the paths that make up equality proofs with the
use of a formal interval I, which plays the role that the closed unit interval does in
ordinary homotopy theory.

A naive approach to this would make the interval an ordinary type. We would then
want to write

Path4(ag,a1) = Z (p(i0) =4 ag) x (p(il) =4 a1)

pl—A

10



but then we are using the equality type to define the path type which is supposed
take the place of the equality type. A step closer is the ill-formed definition

Path4(ag,a1) = Z (p(iO) = ao) X (p(il) = al)
pl—A
where we’ve eliminated the equality type in favour of a non-existent judgmental

equality type. (Riehl and Shulman 2023, Section 1)

Introducing the interval as a ‘pre-type’ and not a first-class type gives us the flex-
ibility to axiomatise a path type with the universal property that we would expect
the ill-formed definition to have. As a pre-type, the interval will behave as a type
in many ways, but not all.

2.1 Dimension Layer
The first way that the interval differs from a first-class type is that it gets its own

section of the context, given by the rules

EXTENDED DTX
= dtx

- dtx =, x: 1 dtx

EMPTY DTX

In a dimension context, we can form dimension terms as follows.

DIMENSION VARIABLE DIMENSION BEGIN DIMENSION END
=,2: 1,2 dtx = dtx = dtx
Sao:LEFax:I EFi0:1 EFil:1

In some presentations of CuTT, such as (Angiuli, Brunerie et al. 2021), these are
the only rules that create interval terms. These correspond to the morphisms in the
cartesian cube category. We, like (Cohen et al. 2018), will have more interval terms
— arising from the additional morphisms in the de Morgan cube category. These
terms express that the interval is a de Morgan algebra.

DIMENSION CONJUNCTION DIMENSION DISJUNCTION DIMENSION NEGATION
=Fr:1I =Fs:I =F7r:I =Fs:I =F7r:I
=Frnans:1I =EFrvs:1I =F—=r:1

We will have the expected equations governing these as part of the next layer.

2.2 Formula Layer

Next, we have a section of the context consisting of formulas relating the interval
terms. This section is what allows us to make sense of the judgmental equalities in
our ill-formed definition of the path type.

For two interval terms r, 7’ : I, we get a formula r = r’ asserting their equality, and
formulas are closed under disjunction. This generates all the formulas we will use,

11



but to define Kan composition for Glue types, formulas also need to be closed under
universal quantification. (Angiuli, Brunerie et al. 2021)

A formula context is simply a list of fomulas; we have a judgment = - ® ftx that
® is a well-formed formula context over =. We have a proof system for a judgment
=|® F ¢ that ¢ is provable from ®, including the usual rules for the connectives, and
the axioms that I is a de Morgan algebra. If we can prove an equality formula, we
can reflect it as a judgmental equality. This does not threaten computability since
this logic is decidable.

2.3 Ordinary Layer

On top of these two layers, we have ordinary Martin-Lof Type Theory with two
additional features. First, we can define terms by pattern-matching on disjunction
formulas, and, second, we have Kan composition.

2.3.1 Disjunction

The rules for eliminating disjunction formulas are those we would expect from con-
sidering them as the pushout of the disjuncts against their conjunction. If we have
two partially-defined terms s,t and they agree judgmentally when they are both
defined, we can define a term on the disjunction.

V-ELIM
EldFaVvp ElP,al'Fs: A ZP, 8Tt A ElP, a8 Fs=t: A

el |ja—s,B—t: A

If ® proves a then [ +— s, 8 +— t] = s, and symmetrically for 8. Also, if u is defined
on aV 3, then [a+— u, f — u] = u.

We have similar rules expressing initiality of i0 = il: when i0 = il holds, we get a
term abort : A, and abort = a : A for any term a : A.

2.3.2 Kan Composition

In HoT'T, types acquire oco-groupoid structure from the J rule. In CuTT, paths are
real maps out of I, and we get oo-groupoid structure from Kan composition, inspired
by the model of HoTT in cubical sets from (Bezem, Coquand and Huber 2014).

To perform a Kan composition, we need a box missing its lid. That is, we have a
term b at the base of the box, a partial term ¢ at the sides of the box, and they agree
judgmentally where they meet. Then we get a term filling the box.

In (Angiuli, Brunerie et al. 2021), we have diagonal Kan compositions, where we
might not compose from the bottom of the box to the top, but from any diagonal
to any other.

12



comj{"ﬁw(gb — 1)(b)

T_) t | comm#(¢ s t[2//2])0) | t

¢ ¢

Figure 2: The data involved in a Kan composition

KAN COMPOSITION
Ebr:d ST =,z 1|®|T'F A type
=z 00,9t A ZE|®ITFb: Alr/z] Z|P, oIl Ftr/z]=0b: Alr/z]

Z|®|T F com%"™" (¢ — t)(b) : Al /2]

This computes judgmentally to the partial term where it is defined, and to the base
if we composed from an interval term to itself.

To maintain computational content, we need to know how to compute with Kan
compositions. For negative types, this means defining Kan composition in terms of
Kan composition for the inputs. For positive types, we add a constructor vhcom
that produces formal Kan compositions, and a computation rule stating that match
sends vhcom’s to Kan composition in the codomain. Another perspective is that
Kan composition is defined by external induction on the structure of the type where
the composition takes place.

13



Example 2.1 (Kan Rule for Negative Dependent Sum). To composein ) ., B, we
compose in A and B.

2-KaAN
Ekr:1 EkrI = z: 0| a: AF B type =z: 00,0t > B
a:A
E®TEb: > Blr/z] El®, 0T Htr/z]=b: > Blr/z]

a:Alr/z] a:Alr/z]
=PI+ com%’qa:rjg((b —t)(b) = (comj"'_””/(qﬁ — 1 (t))(m1()),
2/ ir—r’
OO/, comr==" (o (1) (e (1))l
¢ > mo(t[2'/z]),
)(ma(D))) > Blr'/2]
a:Alr'/z]

2.4 Path Types

Now we can define the path type. (Angiuli, Brunerie et al. 2021, Section 2.10)
Path-FORM

E,x: I|®TF A type E|PIT F ag: Ali0/z] E|PIT F oay : Alil/x]
Z|®|T" F Path, a(ag,a1) type

Path-ELiM
Path-INTRO Z|®|I' = p : Path, 4(ao, a1)
Ex:lolFa: A 2kl
E|®|I F (2~ a) : Path, a(ali0/z],alil/z]) ElPIFpr:Alr/xl
E|PIT Fpi0=ap: Afi0/x]
ST Fpil=ay: Alil/x]
Path-comp

Path-UNIQ
E|®|T F p : Path, a(ag, a)
EI®IT F (x — px) =p: Path, a(ag, ar)

Zr:oTFa: A Ekr:l
EI®IIF (z+—a) r=alr/z]: Alr/x]

Path-KaN

Ebr:IT ZF¢:T 0 EZz:La:I®TH A type
E, 2z I|®| F ag : Afi0/x] E, 2z I|®IFay : Afil/x]
=,z :01|®,¢|T -t : Pathy, a(ag, a;) E|®|T b : Pathy apa(aolr/z], ai(r/z])
Z|P®, |l = tir/z] = b: Pathy gz (ao[r/ 2], a1[r/z])

=T+ comf;;ﬁ:A(aO’al)(gb — 1) (b) = (m — com?y " (

p—tux,
x =10 — ag,
r =il ay,

)(b x)) s Pathy ap /2 (ao[r’ /2], a1 [r' ) 2])

14



2.5 Higher Inductive Types

In HoTT, higher inductive types have constructors producing equalities, but, in
CuTT, they simply have constructors with interval parameters. This lets us give
judgmental computation rules.

Example 2.2 (Suspension). Now, we define suspension by

inductive XA where {
N: YA,
S: YA,
merid” : A — YA, merid®(a) =N, merid’(a) =S,

}

With corresponding formation and introduction rules

S-FORM >-INTRO{ >-INTRO2

=Z|®|I' - A type =PI+ A type ZlelFa: A Ekr:1

=@l - XA type ZE¢l'-N: XA E[®[I" k- merid’(a) : A
Z®r-s: %A Z|®|T I~ merid®(a) =N : T A

Z|®|T F merid(a) =S : XA
Again, we define maps out by cases.

Y-ELIM
Z|P|IT,p: XA E C type
Z|PIT Fs: CN/p El®IT Ft:C[S/p]
E,x: 00 a: A u: Clmerid®(a)/p)
El®Ta: AFuli0/z] = s : C[N/p] E|®la: AFufil/x] =t : C[S/p]
SO Fq: A
E|®|T" - match, o ¢ {N— s, S+ ¢, merid®(a) — u} : Cq/p]

Abbreviate M (q) = match, ¢ ¢ {N— s, S+ t, merid”(a) — u}; then we have judg-
mental computation rules M (N) = s, M(S) = ¢, and M (merid’(e)) = u[r/z,e/al.
As in HoTT, the judgmental uniqueness rule would be too strong; so we omit it.

Kan composition can be decomposed into homogeneous Kan composition — when
the type family is independent of the interval variable — and weak coercion — when
the partial term is defined nowhere. (Angiuli, Brunerie et al. 2021, Section 2.7) To
define Kan composition for positive types, such as XA, we add a constructor vhcom
that computes formal homogeneous Kan compositions, we define weak coercion by
external induction, and these assemble into a Kan rule. (Angiuli, Brunerie et al.
2021, Section 2.15)

We need a case of the computation rule for vhcom:

M(vhcomgg_”ﬂ/(gb = t)(b) = Comz/”ﬂ_”ﬂlZ:T,%,(d)'_}t)(b)/p](qb — M(t[2'/2]))(M(D))

Clvhcomy
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2.6 Univalence

We achieve univalence by a new type-former — Glue — that reifies the path whose
existence the standard univalence axiom demands. The Kan rule for Glue gives com-
putational content to univalence. We also use Glue types to define Kan composition
in the universe. (Angiuli, Brunerie et al. 2021, Section 2.12)

3 Definitions

Definition 3.1 (Morphism). A morphism, or map, f : A — B is a method for
producing terms of type B from terms of type A. If we have a term a: A+ s: B,
then we get a map a.s : A — B, and every morphism arises in this way uniquely up
to change of dummy variable. If we have f: A — B, and t : A, then we get a term
f(t) : B. We define this by (a.s)(t) = s[t/al.

Definition 3.2 (Identity and Composition). Given a type A, we have a : AF a: A;
so we get a map idy = (a.a) : A - A. Given maps f: A — Band g: B — C, we
get amap go f = (a.g(f(a))): A— C.

Definition 3.3 (Homotopy). A homotopy is a map that depends on an interval
variable.

3.1 Equivalences

Definition 3.4 (Equivalence). A map f : A — B is an equivalence when it is
equipped with the following data:

e maps g,h : B — A;
e homotopies M" : B — B, N": A — A, such that

M° =idg MY=fog N©O =id, Nl'=hof

Definition 3.5 (Half-adjoint Equivalence). A map f : A — B is a half-adjoint
equivalence when it is equipped with the following data:

e amap g: B — A,
e homotopies M" : B — B, N" : A — A, such that

M° =idg M= fog N©°=id, Nl=gof

e a homotopy between homotopies 7" : A — B, such that

7_iO,s = f 7_il,s = f o0go f Tr,iO = f o NT” 7_7“,i1 =M"o f
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Lemma 3.6 (Equivalence Promotion). For a map f : A — B, if it is an equivalence,
then it is a half-adjoint equivalence.

Proof. We are given data exhibiting f as an equivalence, and must construct data
exhibiting it as a half-adjoint equivalence. Our first step is to eliminate h in favour
of g. To do this, we use the path we have that connects h and ¢, and concatenate
it with V.

N"(a) = com%1710( N© =idy, Nl=gof
r=i0 — N*(a),
r=il— N*(g(f(a))),
)(h(M"(f(a))))
Next, we adjust N to relate to M as T requires.
N"(a) = com?1710(
r=i0— N*(a),

r=1il — g(f(NZ(a))),
Ng(M"(f(a))))

Path connecting h and g

(a) Definition of N (b) Definition of N

Figure 3: String diagrams for intuition
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Finally, we define 7 by

7% (a) = comf3 1_>0(

r=i0+— f(NZ/(G))a
r =il f(g(f(N*(a)))),
s =10 — f(com? 12! (
r =i0 — N*(a),
r=il— g(f (NZ( ),
Ng(M"(f(a))))),
s =il M"(f(N"(a))),
)(comy®
r=i0+— MY(f(a)),
r=ilw f(g(f(9(f(a))))),
s =10 = MY (M"(f(a))),
s=ilm— MT(MyW(f
)M (M (f(a)))))

f
M—l
9 . =
N
f
f
N1
g
M
~ f
Mfl
9 .
N
f

Figure 4: Intuition for 7

18



3.2 Diagrams

Definition 3.7 (Span). A span is a pair of morphisms with a common domain.

f:

Ay ———— An
fi2
A

The data of a span consists of:
e objects A1, Ao, Aio;
L morphisms f21 : All — AOl; f12 : A11 — AlO-

Definition 3.8 (Cospan). Dually, a cospan is a pair of morphisms with a common
codomain.

Ao
fo2
Aqo f—> Ao
20

The data of a cospan consists of:
e objects Ay, Ao, Ago;
e morphisms foz : Ao1 — Ao, f20 1 Ao — Aogo-

Definition 3.9 (Commuting Square). A commuting square is a pair of a span and
a cospan with common feet, together with a homotopy between the two composites.

Aqy L Aoy
f12 V fo2
Ao T Aoo

The data of a commuting square consists of:
e objects Ay, Ao1, Ao, Aoo;
e morphisms fo; @ A1y — Aoi, fi2 @ A — Ao, Joz 1 Aot — Aoo, fao0 Ao — Aogo-

e a homotopy Hj, : Ay; — Ago, such that HiS = foo o for and HiL = fog 0 fio.
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Definition 3.10 (Commuting Cube). A commuting cube is six compatible com-
muting squares, together with a homotopy between homotopies that fills the cube.

Alll
f121

AlOl

The data of a commuting cube consists of:
e objects Ai11, Aoir, Aror, Ao, Ao, Aoro, Aoor, Aooo;

e morphisms

fuiz t A — Ao fi21 1 A — Ao forr + A — Ao
Ja10 + A110 — Aoto Jio2 + Aror — Aioo fo21 + Aorr — Aoor
Joi2 + Aoi1 — Aoro Joo1  Aro1 — Aoor Ji20  A11o — Aroo
Ja00  A100 — Aooo Jo20 © Aoro — Aooo Jooz2 + Aoor — Aooo

e homotopies
Hiy 1 A11n = Asgo Hjo o Ajn — Aowo Hiy o Apin — Aoo

Hjoo : A110 = Aooo Hjyo o Aror = Aooo Hyo 0 Aotr — Aooo
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such that

Hi1022 = fi2 0 fiz
Hillzz = fi20 © fi12
Hé%o = fo20 © fa10

Hélgo = fa00 © f120

Hé%z = fo10 © f112
Hélm = fo12 © fonn
H;%Q = f200 © fi02

Hé%m = foo2 © foo1

H;%l = fa01 © fi21
H;Zl = fo21 © four

H(I)%2 = fo20 © fo12

Hepo = fooz © fox
e a homotopy between homotopies Cy3, + Aj11 — Agoo, such that

O;%’S(a) = fa00(f120(f112(a))) 0;12’5(@ = foo2(fo21(f211(a)))
Cn(a) = comijo "™ C(a) = comijo "™
7 =10 = Hsp(f112(a)), r =10 > faoo(Hip(a)),
r =il Hip(fa1(a)), r=ilr foo2(H3(a)),
)(fo0(Hg2(a))) ) (H302(f121(a)))

4 Stability

Sometimes, while doing oo-category theory, people will speak of “homotopy limits”,
and “homotopy colimits”. In an oo-category, we will only use these and never their
strict counterparts; so we will refer to them simply as “limits” and “colimits”.

4.1 Pointedness

Definition 4.1 (Zero Object (Lurie 2017, Definition 1.1.1.1)). A zero object is an
object that is both initial and terminal. That is, an object 0 such that, for any
object X, the spaces Hom(0, X') and Hom(X, 0) are contractible. We name these
maps, and their composites, 0.

Definition 4.2 (Pointed oco-Category (Lurie 2017, Definition 1.1.1.1)). A pointed
oo-category is an co-category with a zero object.

Example 4.3 (coGrpd,). The oo-category coGrpd, of pointed spaces has a zero
object given by the one-point pointed space.

Remark 4.4 (Enrichment from Pointedness). Let C be a pointed co-category. Then
we can canonically enrich it over coGrpd, by equipping C(X,Y’) with the point
X—=0=Y.

Remark 4.5 (Pointedness from Enrichment). Let C be a coGrpd,-enriched oo-
category with a terminal object. Then the terminal object 1 is also initial with
inital morphisms 0 : 1 — Z.
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Remark 4.6 (Pointedness Adjunction). The forgetful functor U : PointedooCat —
t.0.coCat mapping a pointed oco-category to its underlying terminal object-having
oo-category has a right adjoint Pointed : t.0.coCat — PointedooCat given by
the coslice at the terminal object Pointed(C) = Cy,. That is, Pointed(C) is the
oo-category of pointed objects in C. In particular, coGrpd, = Pointed(coGrpd).

The above equally applies to ordinary categories if we restrict any spaces to be sets.

4.2 Semi-Additivity

Definition 4.7 (Binary Biproduct). Let C be an ordinary category. A biproduct
of two objects A and B of C is an object that is both the product and coproduct of
A and B.

Remark 4.8 (Finite Biproducts). A zero object is a nullary biproduct, and from a
zero object and binary biproducts we can build all finite biproducts.

Definition 4.9 (Semi-additive Category). A semi-additive category is a category
with finite biproducts.

Example 4.10 (CMon). The category of commutative monoids has finite bi-
products given by the cartesian product of the underlying sets with pointwise oper-
ations.

Remark 4.11 (Enrichment from Semi-additivity). Let C be a semi-additive cat-
egory. Then we can canonically enrich it over CMon, giving C(X,Y") the structure
of a commutative monoid by

0=X 50-Y frg=Xx5xex®yvey Sy

Remark 4.12 (Semi-additivity from Enrichment). Let C be a CMon-enriched cat-
egory with finite products. Then these products are biproducts, with initial morph-
isms 0: 1 — Z, and copairing given by [f,g] = fom +gom: X XY — Z.

Definition 4.13 (Commutative Monoid Object). Let C be a category with finite
products. Then the data of a commutative monoid object in C are

e an object C of C;
e morphisms m:C x(C - Cande:1— C;
e satisfying
mo (m xidg) =mo (ide X m) mo (e x idg) =idg =mo (ide X €)
mo (my,m) =m

Remark 4.14 (Semi-additivity Adjunction). The forgetful functor U : SemiAdditiveCat —
CartCat mapping a semi-additive category to its underlying cartesian category has
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a right adjoint CMon : CartCat — SemiAdditiveCat given by taking the cat-
egory of internal commutative monoids. In particular CMon = CMon(Set).

4.3 Stability

Definition 4.15 (Reduced Suspension and Loop Space). Let C be a pointed oo-
category with pushouts and pullbacks. Then the reduced suspension and loop space
functors 3,€) : C — C are given by

0

O

Lemma 4.16 (X + Q). The reduced suspension functor is left adjoint to the loop
space functor.

Proof. For objects X,Y : C, we have C(XX,Y) = Q(C(X,Y)) = C(X,QY) where
the central (2 is calculated in coGrpd,. O]

Definition 4.17 (Stable co-Category (Lurie 2017, Proposition 1.4.2.11)). A stable
oo-category is a pointed oco-category with pushouts and pullbacks, where this adjunc-
tion is an adjoint equivalence. That is, where the unit and co-unit of the adjunction
are equivalences.

Example 4.18 (Spec). The oco-category Spec of spectra is stable.

Definition 4.19 (Spectrum Object). Let C be an oco-category with finite limits.
Then the data of a spectrum object in C are

e pointed objects C), of C for n > 0;
e with chosen equivalences C,, = QC,, ;1 for n > 0, that preserve the base points.

Definition 4.20 (Stabilisation). The forgetful functor U : StabooCat — LexooCat
mapping a stable oo-category to its underlying finite limits co-category has a right
adjoint Stab : LexooCat — StabooCat giving by taking the category of spec-
trum objects. (Lurie 2017, Corollary 1.4.2.17) This is the stabilisation functor, and
Spec = Stab(coGrpd).

Remark 4.21 (Enrichment from Stability). Let C be a stable co-category. Then
we can canonically enrich it over Spec, giving C(X,Y") the structure of a spectrum
by

C,=C(Q"X,Y)

C,=C("X,Y) = C(O"X,QY) 2 QCQ"MX,Y)) =0C,
where we make use of the fact that € is fully faithful since C is stable.
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Remark 4.22 (Stability from Enrichment). Let C be a Spec-enriched finite limits
oo-category. Then, given the pattern we have established, we might expect that C
is necessarily stable, but the co-category Spec. of connective spectra is a counter-
example, since it is a Spec-enriched finite limits co-category vet it fails even to have
all finite colimits.

This is, however, the only obstruction; so if we also assume C has finite colimits,
then C is stable. To see this, by (Lurie 2017, Propositions 1.4.2.11 and 1.1.3.4), it
suffices to show that ¥ and €2 are fully faithful.

C(RX,QY) = / Spec(C(Z,0X),C(Z,QY)) Yoneda Lemma.
z
%/Spec(Q(C(Z,X)),Q(C(Z,Y))) C(Z,—) preserves limits.
z

= [ Spec(C(Z,X),C(Z,Y)) (2 is fully faithful on Spec.

~C(X,Y) Yoneda Lemma.
C(EX,XY) = / Spec(C(XY, 2),C(XX, 7)) Yoneda Lemma.

= / Spec(Q(C(Y, 2)),Q(C(X, Z))) C(—,Z) maps colimits to limits.

z

= / Spec(C(Y, Z),C(X, 2)) 2 is fully faithful on Spec.
z

=(C(X,Y) Yoneda Lemma.

The ends we used exist when C is small, since Spec is complete, and otherwise we
can compute them in some extension SPEC of large spectra, as in (Kelly 2005).

Intuition 4.23 (E,-Spaces). For 1 < n < oo, E,-spaces are oco-categorical gener-
alisations of monoids and commutative monoids. For a definition, see (Lurie 2017,
Chapter 5). Intuitively, for 1 < n < oo, an E,-space is a space with a binary op-
eration that is as coherently associative, commutative and unital as concatenation
in an n-fold loop space, but possibly without inverses. In particular, for a pointed
space A, the n-fold loop space Q" A is an E,-space. An E-space must satisfy all
the coherence conditions of an E,-space for 1 < n < oo.

Remark 4.24 (Relation of Spectra to E,-Spaces). Given a spectrum C,, we have
Co = Q"(C,); so Cy is an E,-space, for 1 < n < oo; then Cj is an E-space. This
gives a functor U : Spec — E,-Space. This functor is lax monoidal (Gepner,
Groth and Nikolaus 2015); so it induces a functor U-ooCat : Spec-ooCat —
E-Space-coCat sending spectra-enriched co-categories to E..-space-enriched cat-
egories. In particular, every stable co-category is enriched over E..-spaces.

To define a type theory for semi-additive categories, we could axiomatise finite
products and give every type the structure of a commutative monoid. Correspond-
ingly, we might hope to obtain a type theory for stable co-categories by axiomatising
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finite limits and colimits and giving every type the structure of a spectrum. Giv-
ing a commutative monoid structure is convenient since commutative monoids are
presented by operations and equations, but it is not so simple to give the structure
of a spectrum, which includes additional objects. We know stable oco-categories are
also enriched over E -spaces; so we will, instead, endow our types with E..-space
structure.

Enrichment over [E..-spaces is not sufficient to ensure stability of a finitely bicomplete
oo-category, but the rules of our type theory will be stronger due to the context and
we conjecture that they are enough for stability. We expect this to work since E.-
space-enrichment is sufficient for the existence of biproducts, and (Riley, Finster
and Licata 2021) axiomatise biproducts and derive stability. Then our plan is to
present StabTT, show that we have biproducts, and adapt the argument in (Riley,
Finster and Licata 2021, Section 4) to derive stability.

5 Stable Type Theory

Stable Type Theory is cubical type theory with type-formers for finite limits and
colimits, and E_.-space structure for every type. StabTT has dimension and formula
layers as in CuT'T, but the top layer will differ to accommodate the enrichment.

As with Kan composition, the E,-space structure is defined by external induction.
For negative types, we defer to the operations on the components. For positive
types, we freely add terms for each operation, and the eliminator maps these to the
corresponding operations in the codomain.

If StabTT were to have negative ¥ types, we would have to implement their E
operations in terms of those for the components. If we try to define p + p’ for
p,p' > ,.4 B, we can choose m(p) +m(p') : A for the first component, then we need
a second component of type B|m(p)+m1(p')/al, but all we have are mo(p) : B[m(p)/al
and mo(p') : B[m(p')/a], which we cannot add since they have different types. Then
we cannot implement addition for )., B.

One solution would be to define addition not on each type but on each type family.
Then we would be able to add my(p) : B[mi(p)/a] and ma(p') : Blmi(p')/a] to get
a value of type B[m(p) + m(p')/a], as we needed. This could be interesting to
investigate in the future.

A simpler solution, however, is available to us: we will disallow types in StabTT from
depending on variables in the context. Then, in place of the judgments Z|® F I" ctx
and Z|®|I"' - A type, we will have I' ctx and A obj.
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5.1 Enrichment

For the E.-space structure, we have term-forming operations 0 and +.

0 +
= O ftx [ ctx A obj EPoTFa: A EPTEb: A

EeI'F0: A ElelFa+b: A

These operations are not strictly associative, commutative or unital, but they are
up to paths; so we have operations forming these paths. These resemble the unitors,
associator, and braiding of a braided monoidal category.

A p
EleltFa:A  Zkr:l EeltFa:A  Zkr:l
E[QIIE A (a) : A E[QLF p(a) - A
=T l—_)\'o(a) =a:A SN pa)=a: A
El@T A (a)=0+a: A El®T - pla)=a+0: A
a
” Z[@0Fa: A
=Pl a: A =[O0 Fb: A
=G0 b A =[O0 Fc: A
Ekr:l EFr:I
El@Il'Fo"(a,b) : A El@II'a(a,b,c) - A
[T Fo%a,b)=a+b: A E|®|ITF a®(a,b,c)=(a+b)+c: A
Z|®IL ot (a,b)=b+a: A ZE|®Il Fa'(a,b,c)=a+(b+c): A

Similarly, these do not satisfy the triangle, pentagon and hexagon identities judg-
mentally, but we have rules that introduce paths between paths that correspond to
these identities. And these have higher coherators forever.

We also have paths exhibiting that every map respects the E., operations. There
are, again, infinitely many of these beginning with

8 b
EF® ftx T octx E®TFa:A  Z|@'Hd: A
f:A—B Z=Fr:l f:A—B ZFr:l
Z|PIIFop(f) : B E|@l' 0% (f;a,d): B
E|@ITF62(f)=0:B E|OITF62(f;a,d) = f(a) + f(d): B
Z|®T 65 (f) = f(0): B E|®0F &L (f;a,d) = fla+d): B

We also have d5, and so on, showing every map respects the distributivity structure.

It would be good if we could capture all these coherators in finitely many rules, as
with Kan composition. We discuss this in Subsection 7.6.
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5.2 Zero Type

The zero type is very simple to present. We start with the rules for a negative unit
type.

0 0-INTRO 0-UNIQ
“HORM Z+ & ftx I octx El®CFs:0
0 obj E|PIF=*:0 Z|ol'Fs=x%:0

We define Kan composition and the E., operations to all always return *, which
makes sense since, by the uniqueness rule, these equalities would hold already.

We also want 0 to be initial. In pointed spaces, the unique map out of the initial
object sends everything to the point; likewise, we have a derivable term-former
absurd which takes a term of type 0, discards it, and returns the term 0 of the
appropriate type. We get uniqueness of this map from the enriched structure.

To see this, let f : 0 — Z be any map out of 0, then we can construct a path N” from
0 to f by N"(p) = &5(f), which has N°(p) = 0, and N (p) = f(0) = f(x) = f(p),
since every term of type 0 is judgmentally equal to *. Then the space of maps
0 — Z is contractible.

5.3 Pullback Types

The data required to form a pullback type is that of a cospan.

X-FORM
fiA=>C g:B—=>C
AfégB obj

The data required to make a term of a pullback type is that of two elements and a
path between their images under the maps in the cospan.

X-INTRO
fiA=>C g:B—=>C
S0l Fa:A  E@TFb:B  Ea:ldTFc:C
EI®ITFcli0/z] = f(a) : C Z|®|T F ¢fil/x] = g(b) : C

Z|®IT F (a,b,z — ¢) : AfégB

Once we have an element, the elimination rule allows us to retrieve these same three
pieces of data and two judgmental equalities.

X-ELIM
EloCkp: A;x, B EFr:l
C

E|(I>|F|—7_T1(p) tA 2Pl mo(p) : B _E|<I>|F|—7T§(p) :C
E[@IT FaP(p) = f(m(p): € E|@T F 75 (p) = g(ma(p)) : C
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These operations are mutually inverse.

X-COMP
Z@CFa:A  EOTFb:B  Sa:lolFe:C
EI®ITFcli0/z] = f(a) : C Z|P|T F fil/x] = g(b) : C Ebr:l
ElPIFm((a,byx—c)=a: A E|®|I' - ma((a,b,x—¢)) =b: B
E|PII' - 75((a, b,z —c)) =cr/x]: C

X -UNIQ
E|OT Fp: Apx,B

E|P - (mi(p), ma(p),x = m5(p) =p - AfégB

Kan composition for pullback types delegates to the constituent types. The rule
resembles the rule that the type > ., >, 5 Pathc(f(a), g(b)) would have in (Angiuli,
Brunerie et al. 2021).

x-KAN
=Fr:I =1 E,z:]I\CI),¢|FI—t:Af><gB
c

EOT b Apx, B E|GITFilr/2] =b: Apx B

Z|PIT F comy” "5 (¢ + £)(b)
c9

= (comi{’q_}r/((/ﬁ = i (t))(m (b)),
comy” ™" (¢ > o (1)) (ma(D)),

2 ir—r’
x +— comy" T (

¢ > w3 (t[2/2]),

x =10+ f(com¥ % (¢ > mi (1)) (m (D)),

z =il — g(com% (¢ — my(t))(ma(b))),
)(75(D))) FApxy B

Similarly, the enriched structure delegates to the components.

x-0
=F ® ftx [ ctx fiA=>C g:B—=>C

E|®|TF 0= (0,0,2 — comg " (
T =10 53 (f),
x =il 65(9),
)(0)) - Apx,B
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Xt
E|loTkp:Apx, B E|RT kg Apx,B

ElOT Fp+q= (mp)+m),
7T2(p) + 7T2(Q)a

2i0—i1
x — comg”

z =10 &2 (f;m(p), m(q)),
r =il 07 (g;m2(p), m2(q)),
(75 () + 75 (0)))  Apx B

We see that in both example rules we try to simply apply the operation compon-
entwise, but we have to adjust the endpoints of the path, since mi(p) + mi(q) is

judgmentally equal to f(m(p)) + f(m1(q)) rather than f(m (p) + m1(q)).

5.4 Pushout Types

Symmetrically, the data required to form a pushout type is that of a span.

U-FORM
f:C—A g:C—B
AfIaIgB obj

Pushout types are higher inductive types; so we have introduction rules for each
of their constructors. We have point constructors ¢q, ¢t that include A, B into the
pushout, respectively, and a path constructor ¢5 with judgmental equalities ensuring
that the paths connect the chosen points in the images of A and B.

LI-INTRO1 LI-INTRO9
f:C—A g:C—B f:C—A g:C—B
El¢lFa: A Z|el-b: B
ElPIT F t(a): AflalgB Z|PIT F 1o(b) - Af%lgB
L-INTRO3

f:C—-A ¢g:C—B ElolFc:C Ebr:l
E]@]FI—LQ(C):AflaIgB

EI®T F (c) = t(f(e)): AflalgB E|®T F i (c) = ta(g(e)) : AfggB

Higher inductive types have match-style eliminators; so our first attempt at the
elimination rule would have one case for each of our constructors, subject to two
judgmental equalities.
U-ELIM
Zl®la: AFs: Z Z|oNb: Bt Z Ex: el c:Chu:Z
EI®IT, c: CHuli0/z] =s[f(c)/a] : Z  E|®T,c: CFulil/z] =tlg(c)/b] : Z

ZOI0Fp: A,B

E|®|I' Fmatch p {ti(a) — s, ta(b) = t, 15(c) —»u}: Z
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As with the suspension type, the judgmental uniqueness rule would be too strong; so
we need to be able to prove a propositional uniqueness principle from the elimination
rule. The rule as we have written it is not strong enough for this, since we have no
rule asserting an equality between a map of the form p.match p {---} and a map
not of that form.

When we perform a Kan composition, we can force it to agree with a partial term;
we will add this for LI-ELIM, and then we can prove uniqueness. That is, we have a
partial term v : Z that agrees judgmentally with s, ¢, u in the appropriate way, and
we get a total term that agrees judgmentally with v where it is defined.

L-ELIM
ZlPla: AFs: Z Zlerb: Bt Z Zx:olc:Chu:Z
El®IT,c: CrHuli0/z] =s[f(c)/a] : Z  E|®T,c:CFulil/z] =tlg(c)/b] : Z
2|0, 6|0y A, Bv: Z
P, 9|0 a: A v[u(a)/p]=s:Z  E[®,¢|T,b: BEuw(b)/p]=t:Z
E,x: 0P, 90 c: CHolis(e)/p]=u:Z E|PITFp: AflalgB

E|®|T F match p {t1(a) = s, w2(b) —t, i5(c) = u, p'if p—v}: 2

This has the expected computational behaviour when p is ¢1(e), t2(e) or 5(e), and
whatever the value of p, if ¢ holds, the value is v[p/p/].

To see uniqueness, suppose we have two maps hg,h; : A f|5| B — Z, and suppose
ho(e1(e)) = hi(ui(e)), ho(ta(e)) = hi(e2(e)) and ho(ih(e)) = hi(ds(e)). Then we can
define a homotopy H*® between hy and hy by
H*(p) = match p {
v (a) = ho(ui(a)),
12(b) = ho(e2(b)),
15(c) = ho(i5(c)),
p if s =10 — ho(p'),
pif s =il — hi(p),

}

The pushout is a positive type; so we define Kan composition and the E,, operations
to return corresponding constructors vcom, v0, v+, vdj(¢1) and so on, and we must
explain how the eliminator acts on them. The eliminator maps vcom’s to com’s as
for suspension types.

To write the computation rules for eliminating the free E., operations, we need to
forbid s,t,u,v from using the variables in I'. Abbreviate

M(p) =match p {t1(a) — s, 12(b) —t, i5(c) = u, p' if ¢ — v}

then M (v0) = comZ* (¢ + 05 (p.v))(0), and
M(p v+ q) = comz (¢ — &% (p'vi p, q))(M(p) + M(q)) and so on.
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Then our final attempt is

L-ELIM
ElPla: AFs: Z E®b: Bt Z Ex:l|®lc:Cru:Z
E|®Plc: CFuli0/z] = s[f(c)/a] : Z Z|®lc: CFulil/z] =tlg(c)/b] - Z
Z|D, plp’ - AflggB Fov:Z
El®,pla: At vu(a)/p|=s:Z  Z|®,¢lb: BEofwb)/p]=t:Z
Ex: 0@, plc: CHE(c)/p|=u: Z E\CI)|FI—p:Af|(_J|gB

=@ Fmatch p {t1(a) — s, 12(b) = t, ti(c) —u, pif ¢ v} : 2
3

5.5 Special Cases

We will make use of four special cases of pushout and pullback types. When the
feet of the span or cospan are zero, we get the reduced suspension and loop space,
respectively. When the body of the span or cospan is zero, we get sum and product.

YA = OOIZIOO QA= 00>A<00
A+BEAOIEIOB Ax B=Ayx,B
0

Then, when constructing terms of type QA or A x B, we do not need to write out
the data that we know are zero, with the following definitions.

(x+—a)=(0,0,z+a): QA (a,b) = (a,b,x—0): Ax B

Likewise, when eliminating terms of type XA or A 4+ B, we can omit the cases that
we know must be zero, with the following definitions.

>-ELIM-DEF
Ex:l®la:Aru:Z
ElPla: AFufi0/z] =0: 27 ElPla: A ufil/x]=0:Z
El®, 0l XA v: Z Zx 0|9, pla: A vlii(a)/p]=u:Z
S[OT-p: A+ B
Z|P|T" F match p {

3 (a) — u,

p if ¢ — v,

} =match p {
t1(e) — 0,
12(e) — 0,

t3(a) — u,



+-ELIM-DEF

E|Pla:Aks: Z ZE|®b: Bt Z S0l A+ BlFuv: Z

E|®,pla: A vn(a)/p)=s:Z  Z|®,¢lb: BFofwb)/p]=t:Z
S®TFp: A+ B

Z|®|T" - match p {
u(a) — s,
ta(b) = 1,
p if ¢ — v,

} =match p {

u(a) = s,

t2(b) = 1,

12(c) = comzO7(
b GE((0) 015),
x =10 — §;(a.s),
x =il — 0;(b.t),

)(0),
pif ¢,
Yo Z

5.6 Biproducts

As with semi-additive categories, for types A, B, we have two natural maps
o, : A+ B — Ax B, given by

¢(p) = (match p { ¥(p) = match p {
t(a) — a, t1(a) — (a,0),
t2(b) — 0, t2(b) — (0,0),
12 }
match p {
21 (a> = 07
ta(b) = b,
)

The idea behind both of these maps is the block matrix
idg O
0 idg
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For semi-additive categories, the two maps agree on the nose, but for us they are
equal only up to a path. We construct this path with the eliminator for + as follows.

Y :A+B— AxB
X"(p) = match p {
t1(a) — (a,0),
t2(b) — (0,0),
Y i =005 o)
pif r=il— Y(p'),

}

To show that we have biproducts we must prove that 1, and hence equally ¢, is an
equivalence. For this, let g,h: A x B — A+ B be given by

9(p) = h(p) = t(mi(p)) + tama(p))

First, consider the composite ¢ o g. We see

¥(g(p)) = match 1y (mi(p)) + 2(ma(p)) {
t1(a) — (a,0),
t2(b) = (0,0),
¥
= com’L5 " () (match i (mi(p)) {
t1(a) — (a,0),
t2(b) — (0,),
} + match o(ma(p)) {
u(a) = (a,0),
t2(b) — (0,0),
)
((m1(p), 0) + (0, m2(p)))
= comiyp )((mi(p) +0,0 + ma(p)))
~ (m1(p), ma(p))
=p

= coni%; ()

Then we have a path M" : A x B — A x B between idsxp and 1 o g.

M (p) = comiiyz" (0" (m1(p), N (m2(p))))

When we consider the other composite, h o1, we see that there are no computation
or uniqueness rules that we can usefully apply. The composite is, however, a map
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out of A+ B; so we seek to construct a path N" : A+ B — A + B connecting it to
the identity using the eliminator for -+.

To that end, observe the value of h ot on ¢1(a).

h(1(t1(a))) = h(match ¢1(a) {
u(a) = (a,0),
t2(b) = (0,0),
)
h((a,0))
u(mi((a,0))) + t2(m2((a,0)))
t1(a) + 12(0)
t1(a) +0

t1(a)

Then we have a path connecting ¢1(a) to h(1(c1(a))) and, together with the corres-
ponding path for ¢5(b), it makes a path from ids, g to h o).

§ 8

N'(p) =match p {
t(a) — com3 25" (
r=i0 — t1(a),
r =il t1(a) + 6;(t2),
)(p" (11(a))),
12(b) = comF 25 (
r =10 — 12(b),
r =il — 05(t1) + 2(b),
YA (22(0))),
p if r =10+ p/,
plif =il h(d(p)),

}

Thus ¢ is an equivalence, and the category of types has biproducts.
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6 Theorems

6.1 Pullback

Definition 6.1 (Gap Map). For every commuting square, we get a canonical map
(fa1, f12, Hao) from the body of the span to the pullback of the cospan.

Ay X Aoo Aqo

S

(f21,f12,H22)

An L Ay
H
fi2 by fo2
Aqo P > Aoo

With 7T10(f217f12, H22) = fa, 7T20(f217f127H22) = fi2, and 7T§O(f21> fi2, sz) = H§2.

Definition 6.2 (Pullback Square). A pullback square is a commuting square whose
gap map is an equivalence.

A L An
fi2 V fo2
Ao T Ago

The data of a pullback square consists of:
e the data of a commuting square;
® 1aps S, R: A[)l X Ago AlO — AH;

e homotopies P" : Ag1 X 4,5 A10 = Ao1 X4y, Ar0, @ 1 A11 — Aqq, such that

Pio = idz401><AooAlo Pil = (f217 f127 HQ?) 0S5
QP =idy,, Q" = Ro (fa, fr2, Ha)

This definition agrees with the usual definition in terms of the universal property of
pullback (Rijke 2019, Proposition 1.4.10), but will be more convenient for our use.
The idea is that the pullback type has a strict universal property, and anything that
is equivalent to it will have the same universal property weakly.
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Example 6.3 (Canonical Pullback Square). For any cospan, we get a canonical
commuting square by taking the pullback.

Apy X Ago Ao

"~

(71,m2,m3)

gt .
Aoy X Ago Ao > Ao
T,
2 / foz2
Aqo 7 > Ao
20

In this case, the gap map is (my, mo, T3) = idAmXAOOAm; so, we can let
S=R=P =0Q" =idag x40

to give the canonical pullback the structure of a pullback square.

Theorem 6.4 (Pullback of Equivalence is Equivalence). Given a pullback square

An — =, Ao

-

f12 foz2
Haz

Axg T Ago

If fa0 1s an equivalence, then fa1 is an equivalence.
Proof. By, Lemma 3.6, we may assume that f5 is a half-adjoint equivalence. Then,

the data we are given is that of a pullback square, as in Definition 6.2, together with
the following, exhibiting that fsq is a half-adjoint equivalence.

. T . T .
g0 - AOO — AlO M20 : AOO — AO(] N20 : AlO — Alg
MiO _ d Mil _ NiO _ d Nil _
20 = 104y 20 = J20 © 20 20 = 104 20 = 920 © fo0
TS . i0,s __ il,s __
Too : Ao — Ao Too = fa Ta0 = f20 0 g20 © f20
’V‘,iO _ N’r‘ T’,il _ M’r
Too = Ja0 © Nog Toy = M3y 0 fao

We must implement the following data to make fo; an equivalence.

921, ha1 1 Ain — A Mng cAn — An N§1 c A — An
MO =idy,, ML = fo1 0 go NP2 =idy,, N} = hyi 0 for
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We let

S(a, g20(foz(a)), x = Myy(fo2(a)))
R<a7920(f02(a))7
T comi{(i)%_)il(
=10 —~ fog((l),
x =il = M3 (fox(a)),

)(fo2(a)))

g21(a)

Then

fa1(g21(a)) = fa1(S(a, gao(fo2(a)), z = My (foa(a))))
= (m1 o (fa1, frz, Haz) 0 S)((a, gao(foa(a)), z — May(foz(a))))
~ mi((a, g20(fo2(a)), © = My (foz2(a))))

=a

So we can have M3, (a) = m1(P"(go1(a))).
Also

ho1(fo1(a)) = R(f21(a), g20(foa(f21(a))),

z:i0—il
x — comiy

=10 — foo(far(a)),
x =il = M3 (for(fa1(a))),
)(fo2(far(a))))
~ R(fa(a), g20(fa0(f12(a))),

T comj{g%_"l(

z =10 foo(fu(a)),
z =il = Ms(fa(f12(a))),
)(Ha(a)))
~ R(fa1(a), g20(fao(fr2(a))),

T comj{g%ﬁ'l(

=10+ foa(far(a)),
x =il foo(Ny(fi2(a))),
)(H3(a)))
~ R(fa(a), fiz(a),x — Hy(a))
= (Ro (fa1, fi2, Ha2))(a)

~~>
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So

_ 70—l
N3y (a) = com) | T
r =10 — a,

r =il R(fa(a), gao(HyY (a)),

T comi{'o(;—“l(

r =0 — foa(far(a)),
r =il Mgzo(ngyl(a))a
)(H33 ™ (a))),
)(comfﬁ{iﬁ_}il(
r=i0— Q™ (a),
r =il — R(fa1(a), g20(fa0(f12(a))),

T = comi{g%_“l(

=10 foo(fa(a)),
x =il = 159" (f12(a)),
)(H3,(a))),
J(R(f21(a), Nao(fr2(a)),

z:i0—r
x = com " (

x =10 — foa(fa1(a)),
r=il — fQO(szo(le(a)))a
)(H33(a)))))
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6.2 Pushout

Definition 6.5 (Co-Gap Map). For every commuting square, we get a canonical
map F' from the the pushout of the span to the body of the cospan.

Aqy L Aoy

H-
fi2 % fo2

L1

With F' given by
F(p) =match p {
t(a) = foa(a),
t(b) = fa0(D),
15(c) = Ha(c),
}
This has F oty = foo, F oty = fo0, and F o i = Hy,.

Definition 6.6 (Functoriality of Pushout). For any morphism of spans,

fl12 fa11
Ao «——— A ——— Ao

fi20 fi21 foz21
H122 H221

Avoo T Aio1 T Apor

we get a canonical morphism F': Ay19 Ua,,, Aoir = Aioo Ua,y,, Aoor given by

F(p) =match p {

u(a) = u(fio(a)),

L2(b) = 12(fo21 (b)),

HO comjil?);jilonm(
x =10 = 11(Hip(c)),
x =il 1(H3(c)),

)(¢5(fi21(c))),
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6.3 Cube

Theorem 6.7 (Cube Gives Pullback of Pushouts (Riley, Finster and Licata 2021,
Theorem 4.5) (Rijke 2019, Theorem 2.2.12)). Suppose we have a commuting cube
with vertical faces pullback squares.

14111

- fi21 -

/4110 f4011
f120 fo21
14100 14001

Then we get a pullback square.

T
Av10Uayy, Aosn — Aowo

-

F / fo20

A100 Ua,o, Aoor —5 Aooo

This is a theorem in the setting of (Rijke 2019), and we would like to use it to derive
stability of our category of types, but we cannot prove it in StabT'T as it is currently.

We are given the data of a commuting cube, as in Definition 3.10, together with
data exhibiting the vertical squares as pullback squares, as in Definition 6.2.

The maps 7', B on the top and bottom of the pullback square we are trying to
construct are the co-gap maps of the top and bottom faces of the cube, as in
Definition 6.5.
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These are:

T(p) =match p { B(p) = match p {
u(a) = faro(a), t(a) = faoola),
t2(b) = fo12(D), 12(b) = fooz(b),
13(c) = His(c), i3(c) = Hige(c),

} }

The map F on the left is the canonical map from Definition 6.6:

F(p) =match p {

t(a) = u(fizo(a)),

t2(b) = t2(fo21(D)),

t3(c) = Comxzﬁl;%o—ljixwlf‘om(
z =10 — 11(Hip(c)),
x =il = 12(H3 (c)),

) (13 (fi21(c))),
}

NOW, we can define G* : AllO Ua, AOll — AOOO by
G*(p) =match p {
t(a) = Hiy(a),
t2(b) = Heoo(b),
t5(c) — com%(')tjs(

z:iO—)y(
Aooo

r =0 Hj(f112(c)),
r =il = Hgy,(foui(c)),
) (fozo(H312(c))),
r =10 — Hi(fi12(c)),
r =il Hy(far1(c)),
)(C™(c)),
pif s =10 fooo(T(p")),
p if s=il— B(F(p)),

}

Then we’ve constructed the commuting square. To promote it to a pullback square,
we must define a section and a retraction

s =10 — com

S, R Ap1o X g (A100 Uare, Aoor) = A0 Uay,, Ao
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of the gap map (7', F, G). We'll try to construct S and see where we need a stronger
eliminator for pushout than we have given ourselves.

Take p : Ap1o X Agee (A100 Uayg, Aoo1). Then we have
m(p) = Aoio ma(p) + A1o0 Uayg, Aoot m3(p) * Aooo

() = foao(m1(p)) 5 (p) = B(m(p))

We need to make a term of type Ao Ua,,, Ao11, but we don’t know what con-
structor to use; so we need to proceed by cases. The only candidate to match on is

ma(p) : Aro0 Uayg, Aoor-

Consider the case that ma(p) is ¢t1(a). Now we have m1(p) : Ap1o and a : Ajgo. Then
we’d like to make a term of type Apip XAy, A100 and apply Sogg to get a term of
type Ai109, whereupon we can apply ¢; to return Ajjg Ua,,, Aorr-

We have the first and second components of our term of type Agio X g0 A100, and
we just need a path between their images. This path is in Aggg, SO we turn to our
path 7T§(p) . AO()O-

We have 70 (p) = foao(m1(p)), as we need. For the other endpoint, it seems as though
we have ﬂg (p) = B(ma(p)) = B(t1(a)) = faoo(a), as required. But if we try to define
S by

S(p) = match mo(p) {

t(a) = Sao((mi(p),a,z — m3(p))),

¥
we see that this is not allowed by our L-ELIM rule, since we cannot mention p while

writing the cases.

Even if we permit ourselves to use variables from I', we do not have my(p) = ¢1(a)
when we are writing the ¢; case, since the hypothesis Z|®|I",a : AF s : Z does not
mention the scrutinee.

This problem could be circumvented in a dependent type theory by passing the path
as an argument to a function that we construct by induction on A;poU4,,, Ago1. The
motive of our induction will be the type family

Pt Aot X g0 (A100 Uare, Aoo1), q 2 Aroo Uaye, Aoot
- PathAOOO(fOQD(/]Tl (p>)7 B(q)) — AllO |—|A111 AOll tYPe

Then we could write

S(p) = match mo(p) {
vi(a) = Am.Sao((m1(p), @, m)),

Hms(p))
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This solution is not available to us since we have neither function types nor depend-
ent types.

A simple approach to fixing this problem without dependent types is to allow
ourselves to hypothesise judgmental equalities. Then the U-ELIM rule would have
a hypothesis resembling Z|®|I",a : A|O, (p = 11(a)) F s : Z. This does not seem
to be a promising approach. First, hypothesising judgmental equalities is liable to
make type-checking undecidable. Second, we may need to hypothesise judgmental
equalities that depend on additional interval variables, and that only hold when an
equation involving these variables holds; this would be very complicated. Third,
the semantics for adding a judgmental equality to the context would be something
like taking the strict equaliser. The LI-ELIM rule would then assert that pushout
is well-behaved with respect to strict limits, whereas it seems more appropriate to
refer to homotopy limits.

We would like a L-ELIM rule that expresses that pushouts in a stable oco-category
are stable under pullback, while still computing on the free E., operations. With
this, we should be able to prove Theorem 6.7 in StabTT.

6.4 Putting It All Together

Now, assuming a version of StabTT where Theorem 6.7 holds, we can proceed as in
(Riley, Finster and Licata 2021, Section 4). Consider the following cube.

Ax A
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Where C, 1 QA — A x A is given by

250 (p) = comio M (
r =10+ (75"7*(p),0),
r=il (0,75 7(p)),

) (57 (p), 75" (p)))

The idea behind C%y, is that traversing the same loop in each component of A x A
consecutively is equivalent to traversing them concurrently.

Applying Theorem 6.7, we get a pullback square

YOA ———— A

J

F / (id,id )

A+AT>A><A

We know that 1 is an equivalence; so by Theorem 6.4, € is also an equivalence.

7 Future Work

7.1 Elimination Rule for Pushout

To complete the proof of Theorem 6.7, we need an elimination rule for the pushout
type that ensures that pushouts are stable under pullback, but this must not come
at the cost of being able to compute match’s on terms returned by the free E
operations.

7.2 Unit Map

Once we’ve proven Theorem 6.7, we will have shown that the co-unit ¢ of the ad-
junction between ¥ and €2 is a natural equivalence. Then, for stability, it will remain
to prove that the unit 7 is also a natural equivalence.

One approach to this would be to dualise our argument for the co-unit. This may
fail, however, because there is not complete symmetry between inputs and outputs
in StabTT, since our contexts have multiple variables; yet we only produce a single
term.

Another approach would be to continue to follow (Riley, Finster and Licata 2021).
They make use of the Little Blakers-Massey Theorem (Anel et al. 2020, Corollary
4.1.4); so this approach would require proving it in StabTT. The Little Blakers-
Massey Theorem states that, given a pushout square, if a certain map is an equival-
ence, then the square is also a pullback square. In (Riley, Finster and Licata 2021),
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they use the existence of biproducts to show that the map is always an equivalence
and, therefore, that every pushout square is a pullback square. Then, for any type
A, we have

A———0

|

-

0 — XA

which is a pullback square since it is a pushout square. But also, we have a pullback
square
QYA — 0

.

0 — ¥A

Then, by uniqueness of pullbacks, 0¥ A = A; so we have stability.

Conjecture 7.1 (Stability). At least the second of these approaches will work. Thus,
the category of types is stable.

7.3 Internal Language

The intended semantics of StabTT is stable co-categories. If Conjecture 7.1 holds,
it remains to verify that our definition of stability genuinely corresponds to stability
of the co-categories that model the type theory. We would also like the reverse
implication: that every stable oco-category is a model of StabTT in an essentially
unique way.

Conjecture 7.2 (Internal Language for Stable oo-Categories). StabT'T acts as the
internal language for stable oo-categories.

7.4 Smash Product

The smash product of spectra is important in higher algebra, since we use it to
define E,-rings. In (Riley 2022), Riley extends the type theory of (Riley, Finster
and Licata 2021) with linear type-formers, including a dependent form of the smash
product.

The same could be done with StabTT. This would likely require a more complex
context structure, since we would have two product operations: cartesian product,
and smash product. This could look like bunched type theory (Pym 2002), or it
could follow (Riley 2022) and have an ordinary context together with a ‘palette’
keeping track of the linearity requirements.

45



7.5 Indexing over a Base

Our original motivation to study spectra was algebraic topology, but in the type
theory we ended up with there are only spectra and no spaces to compute algebraic
invariants of.

We could define an indezed type theory (Isaev 2021) whose base type theory is
ordinary cubical type theory, and whose indexed type theory is StabTT, with the
types in the two levels interpreted as spaces and spectra, respectively. Then we
could define type-formers ¥°°, 2*° that form the suspension spectrum of a pointed
space, and the underlying pointed space of a spectrum.

Then, following (Riley 2022, Definition 4.2.1), we could define the homology and
cohomology of a pointed space X with coefficients in a spectrum E by

Eu(X) = m(QF(5°(X) ® E))

E"(X) = mp (Q7(5%(X) — E))

7.6 Higher Coherators

Part of our motivation for working synthetically was to avoid the combinatorics
associated with explicit descriptions of co-categorical entities; so it is unsatisfying
that our syntax has infinitely-many term-formers for the various coherators of an
E.-space.

The proof of stability is finite; so it only uses finitely-many of these coherators.
We may question, therefore, why the higher coherators are necessary? The higher
coherators appear in the computation rules for the lower coherators; so if we removed
them outright, we would end up with the stuck terms we sought to eliminate.

That said, the higher coherators would still be derivable, since we can relate the
addition in € types to concatenation of paths, which is completely coherent be-
cause of Kan composition, and, given stability, every type A is equivalent to QX A.
Possibly we could remove most of the higher coherators, and use these derivable
coherators in the computation rules that would have broken, but this might lead to
non-terminating computations.

Kan composition provides complete coherence of concatenation of paths with a single
operation. We can even use Kan composition to prove distributivity of any operation
over Kan composition. Given f : A — B, and the data of a Kan composition in A,
we can define a path 65 : B by

com

s 2/ —r!
6. = comp (

¢ f(t[2'/2]),

s =0 comy "% (¢ f(1))(F (D)),

s =il f(comy" % (¢ 1)(b)),
)(f(D))
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which has

Oen = comz " (¢ = f(1))(f(B))
Oton = f(comiy™™" (¢ = 1) (b))

and, throughout, if ¢ holds, §5, = f(t[r'/z]), and if r = ¢/, 65 = f(b). Perhaps

there is some operation akin to Kan composition that unifies all the higher coherators
including the distributors; then we would only need rules for this single coherator.

7.7 Operations on Type Families

Another approach to enrichment is to define the operations for type families rather
than individual types. This fits with the semantics of type families as morphisms and
terms as sections, since post-composition by these morphisms would preserve the
operations. This would also strengthen the analogy with Kan composition, which is
defined for type families.
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