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Why care about Stable co-Categories?

Topos | Pointed | Semi-Additive | Abelian/Stable
1 Set Set, CMon Ab
oo | Space | Space, Es-Space Spec

Favourite stable co-category Spec:
® Abelian groups up to homotopy;
® Generalized cohomology theories;
® CW complexes with negative-dimensional cells;

® Spectra are to spaces what linear algebra is to algebra.
(Malkiewich 2023)



Why use type theory for co-Categories?

® oco-categories are hard because of coherence conditions.

® In type theory we use universal properties rather than analytic
definitions.

e Universal properties are automatically coherent.
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® oco-categories are hard because of coherence conditions.

In type theory we use universal properties rather than analytic
definitions.

Universal properties are automatically coherent.

Type theories compute (unless they have axioms).



Overview

Define a type theory for stable co-categories, that computes.

¢ In (Riley, Finster and Licata 2021), they axiomatise
biproducts, and derive stability.

® Define a type theory where biproducts are a theorem.

® Follow the same method to derive stability.



Definition (Zero Object (Lurie 2017, Definition 1.1.1.1))

A zero object is an object that is both initial and terminal.

Definition (Pointed Category (Lurie 2017, Definition 1.1.1.1))

A pointed category is a category with a zero object.

Example (Set,)

The category of pointed sets has a zero object given by the one
point space.



Pointedness and Enrichment

Remark (Enrichment from Pointedness)

Let C be pointed.
We can canonically enrich it over Set, by equipping C(X,Y') with

X—=-0=>Y

Remark (Pointedness from Enrichment)

Let C be a Set,-category with a terminal object 0.
Then 0 is also initial, since, for f : 0 — Z, we have

f=Ffoidg=fo0=0



Semi-Additivity

Definition (Binary Biproduct)

A biproduct of two objects A and B is an object that is both the
coproduct and the product of A and B.

Definition (Semi-Additive Category)

A semi-additive category is a category with a zero object and
binary biproducts.

Example (CMon)

The category of commutative monoids has finite biproducts given
by product of the underlying sets with pointwise operations.

Remark

In a semi-additive category, we can write morphisms between
biproducts as block matrices, as we can in Vec.



Semi-Additivity and Enrichment

Remark (Enrichment from Semi-Additivity)

Let C be semi-additive.
We can canonically enrich it over CMon by equipping C(X, Y) with

0=X=0oY frg=xX2Xxaox®vyvay Yy

Remark (Semi-Additivity from Enrichment)

Let C be a CMon-category with finite products.

As before, the terminal object is also initial.

For objects A and B, the product A& B is also the coproduct,
with inclusions and copairing given by

t1 =(ida,0): A= A®B t, =(0,idg) :B—A®B

[fg]l=fom+gom:A®B—C



Commutativity of Limits and Colimits

Proposition (Pointedness and Commutativity)

A category C is pointed iff it has an initial object and a terminal
object and the functors picking them out commute.
Two constants commute iff they coincide; so this is iff 1 = 0.

Proposition (Semi-Additivity and Commutativity)

A category C is semi-additive iff it has finite coproducts and
products and the functors computing them commute.
Thatis, iff 1 20 and (A+ B) x (C+ D)= (Ax C) + (B x D).

Definition (Stable Category)

A stable category is a category with finite colimits and limits and
the functors computing them commute.
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Proposition (Pointedness and Commutativity)

A category C is pointed iff it has an initial object and a terminal
object and the functors picking them out commute.
Two constants commute iff they coincide; so this is iff 1 = 0.

Proposition (Semi-Additivity and Commutativity)

A category C is semi-additive iff it has finite coproducts and
products and the functors computing them commute.
Thatis, iff 1 20 and (A+ B) x (C+ D)= (Ax C)+ (B x D).

Definition (Stable Category)

A stable category is a category with finite colimits and limits and
the functors computing them commute.

Oh no!

Every stable category is trivial.




Finite Colimits and Limits in oo-Categories

Let C be a pointed co-category.

Definition (Reduced Suspension and Loop Space)

For an object Z € C, the reduced suspension and loop space, when
they exist, are given by

Z —— 0 QZ —— 0
| . [
00— >7 00— 7

We have C(EX,Y) = Q(C(X,Y)) = C(X,QY); so ¥ 4 Q.
In Set,, Q7 = 0.



Stability

Definition (Stable oo-Category (Antolin-Camarena 2017))

A stable oo-category is an co-category with finite limits and
colimits that commute.

Stability ~ Equivalence (Lurie 2017, Proposition 1.4.2.11)

A stable oco-category is a pointed co-category with pushouts and
pullbacks, where the ¥ -  adjunction is an adjoint equivalence.
That is, where the unit and co-unit of the adjunction are
equivalences.

Stability ~ Enrichment (Hillyard 2025, Remarks 4.21 and 4.22)

An oo-category is stable iff
It is Spec-enriched and has Spec-enriched finite limits and
colimits.

Spec-enriched implies E.-Space-enriched.



Why Cubical Type Theory?

® |n HoTT, we have axioms funExt and ua.

® |n Cubical Type Theory, we add new primitives from which
these can be proven, restoring computation.

¢ Axiom S in (Riley, Finster and Licata 2021) resembles ua.



Cubical Type Theory

Reify paths as maps out of a formal interval I.

Interval variables get their own section of the context.

Interval term-formers: constants i0 and i1, and optionally the
connectives A, V, and —.

Context section for formulas.

Disjunction elimination and Kan composition.



Kan Composition

comZ " (¢ + t)(b)

T_} ot comyrrg e dZ/a)b) | ¢




Stable Type Theory

Stable Type Theory

Stable Type Theory is cubical type theory with type-formers for
finite limits and colimits, and E,-space structure for every type.
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Stable Type Theory

Stable Type Theory is cubical type theory with type-formers for
finite limits and colimits, and E,-space structure for every type.

We won't have dependent types.

Consider p+ p' for p,p' : 3, 4 B.

Naively, p + p’ = (m1(p) + m1(p’), m2(p) + m2(p'))-
But ma(p) : B[mi(p)/a] and m2(p') : Blmi(p')/al;
So, this is ill-typed.



Stable Type Theory

Stable Type Theory

Stable Type Theory is cubical type theory with type-formers for
finite limits and colimits, and E,-space structure for every type.

We won't have dependent types.

Consider p+ p' for p,p' : 3, 4 B.

Naively, p + p’ = (m1(p) + m1(p’), m2(p) + m2(p'))-
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So, this is ill-typed.

A Better Way?

SuM TERM
AFq:T ARy T [+ A type
Al a:Apn] A3 Al

Ata+a : Aly +9]




Every type has an [E-space structure:
® For a type A, we have 0: A;
® For terms a,b: A, we have a+ b: A;
e We have paths A, p, o, a exhibiting that + is unital,
commutative and associative;
® \We have higher paths forever exhibiting coherence of the
lower paths.
Every operation respects this structure:
® Foramap f: A— B, we have dp, §+ and so on exhibiting
that f preserves 0, + and so on;
® And ds,...
These are rules, like Kan composition; not axioms.



Zero Type

® We have a type 0;

® \We have a term * : 0;

For any term s : 0, we have s = x;

These are the usual rules for a negative unit type;

As before, we can prove that 0 is initial.



Pullback Types

Afx B—" 5 A

l Behaves as ) ... > ,.gPathc(f(a), g(b)).

Kan and enrichment operations are pointwise.

—>C

ZlOIM - p:ApxgB  EI0ITE g Arx, B

E|®IN - p+q = (m(p) + m(q),
m2(p) + m2(q),
x = comZ0(

x =10 — 0% (f; m1(p), m1(q)).

x =il — 6% (g; m(p), m2(q)),

(w3(p) +m3(0))) : Arx, B



Pushout Types

c—F A

‘ :3/ B Kan and erm.chment operations are formal,
. And the eliminator preserves them.
B

match p {
ti(a) — s,
L2(b) — t,

13(c) — u,



Pushout Types

S SN

C
‘ :3/ B Kan and enrichment operations are formal,
-
B

And the eliminator preserves them.
Lo Af'EIgB
match p {
ti(a) — s,
L2(b) — t,
13(c) — u,

pif ¢ — v,



Special Cases

YA= 00|7‘|00 QA = 00)/:00

A+ B = AgloB Ax B = Ayx,B
0

When we introduce or eliminate these, we can omit terms that we
know must be zero.



For types A and B, we get a map ¢ : A+ B — A x B given by
¥(p) = match p {
t1(a) — (a,0),
t2(b) — (0, b),
}

We want to show that this map is an equivalence.
Our proposed inverse is ¢ : A x B — A+ B given by

o OO

¢(p) = t1(mi(p)) + t2(m2(p)) <=

With the eliminator for 4+, we can prove that these are indeed
mutually inverse.



Deriving Stability

Theorem (Cube of Pullbacks (Rijke 2019, Theorem 2.2.12))

T fa1 -
fir2 i1

%

-

Aot A110 Uay; Aotr —— Aoto
J

. J/foZI Fl ’*/G lfozo

A100 Uy, Acor —5— Aooo

A110

ﬁzoJI

A1oo Aoo1

fa00 foo2
fozo



Deriving Stability

s

3 0 TOA —F— A
/m\cm J F\L : /G J{(idAvidA)
=5

A+AT>A><A

We have 9 an equivalence; so € is an equivalence.
Apply Little Blakers-Massey Theorem to get 1 an equivalence.



Problem with Cube of Pullbacks

While Cube of Pullbacks is provable in HoTT,
We can't prove it in StabTT with our eliminator for pushout.




Future Work

® Strengthen eliminator for pushout and prove the cube
theorem.

® Prove Little Blakers-Massey Theorem to get n an equivalence.

Stable type theory is the internal language for stable co-categories.

® Add smash product, and X and Q.
e Simplify the higher coherators. (A ~ Q¥ A)
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