
Towards Cubical Type Theory
for Stable ∞-Categories

Reuben Hillyard

2025

Why care about Stable ∞-Categories?

Topos Pointed Semi-Additive Abelian/Stable

1 Set Set• CMon Ab
∞ Space Space• E∞-Space Spec

Favourite stable ∞-category Spec:

• Abelian groups up to homotopy;

• Generalized cohomology theories;

• CW complexes with negative-dimensional cells;

• Spectra are to spaces what linear algebra is to algebra.
(Malkiewich 2023)

Why use type theory for ∞-Categories?

• ∞-categories are hard because of coherence conditions.

• In type theory we use universal properties rather than analytic
definitions.

• Universal properties are automatically coherent.

• Type theories compute (unless they have axioms).

Why use type theory for ∞-Categories?

• ∞-categories are hard because of coherence conditions.

• In type theory we use universal properties rather than analytic
definitions.

• Universal properties are automatically coherent.

• Type theories compute (unless they have axioms).

Overview

Goal

Define a type theory for stable ∞-categories, that computes.

Strategy

• In (Riley, Finster and Licata 2021), they axiomatise
biproducts, and derive stability.

• Define a type theory where biproducts are a theorem.

• Follow the same method to derive stability.

Pointedness

Definition (Zero Object (Lurie 2017, Definition 1.1.1.1))

A zero object is an object that is both initial and terminal.

Definition (Pointed Category (Lurie 2017, Definition 1.1.1.1))

A pointed category is a category with a zero object.

Example (Set•)

The category of pointed sets has a zero object given by the one
point space.

Pointedness and Enrichment

Remark (Enrichment from Pointedness)

Let C be pointed.
We can canonically enrich it over Set• by equipping C(X; Y) with

X → 0 → Y

Remark (Pointedness from Enrichment)

Let C be a Set•-category with a terminal object 0.
Then 0 is also initial, since, for f : 0 → Z, we have

f = f ◦ id0 = f ◦ 0 = 0

Semi-Additivity

Definition (Binary Biproduct)

A biproduct of two objects A and B is an object that is both the
coproduct and the product of A and B.

Definition (Semi-Additive Category)

A semi-additive category is a category with a zero object and
binary biproducts.

Example (CMon)

The category of commutative monoids has finite biproducts given
by product of the underlying sets with pointwise operations.

Remark

In a semi-additive category, we can write morphisms between
biproducts as block matrices, as we can in Vec.

Semi-Additivity and Enrichment

Remark (Enrichment from Semi-Additivity)

Let C be semi-additive.
We can canonically enrich it over CMon by equipping C(X; Y) with

0 ≡ X → 0 → Y f + g ≡ X
∆−→ X ⊕ X

f⊕g−−→ Y ⊕ Y
∇−→ Y

Remark (Semi-Additivity from Enrichment)

Let C be a CMon-category with finite products.
As before, the terminal object is also initial.
For objects A and B, the product A⊕ B is also the coproduct,
with inclusions and copairing given by

«1 ≡ (idA; 0) : A→ A⊕ B «2 ≡ (0; idB) : B → A⊕ B

[f ; g] ≡ f ◦ ı1 + g ◦ ı2 : A⊕ B → C

Commutativity of Limits and Colimits

Proposition (Pointedness and Commutativity)

A category C is pointed iff it has an initial object and a terminal
object and the functors picking them out commute.
Two constants commute iff they coincide; so this is iff 1 ∼= 0.

Proposition (Semi-Additivity and Commutativity)

A category C is semi-additive iff it has finite coproducts and
products and the functors computing them commute.
That is, iff 1 ∼= 0 and (A+ B)× (C +D) ∼= (A× C) + (B ×D).

Definition (Stable Category)

A stable category is a category with finite colimits and limits and
the functors computing them commute.

Oh no!

Every stable category is trivial.

Commutativity of Limits and Colimits

Proposition (Pointedness and Commutativity)

A category C is pointed iff it has an initial object and a terminal
object and the functors picking them out commute.
Two constants commute iff they coincide; so this is iff 1 ∼= 0.

Proposition (Semi-Additivity and Commutativity)

A category C is semi-additive iff it has finite coproducts and
products and the functors computing them commute.
That is, iff 1 ∼= 0 and (A+ B)× (C +D) ∼= (A× C) + (B ×D).

Definition (Stable Category)

A stable category is a category with finite colimits and limits and
the functors computing them commute.

Oh no!

Every stable category is trivial.

Finite Colimits and Limits in ∞-Categories

Let C be a pointed ∞-category.

Definition (Reduced Suspension and Loop Space)

For an object Z ∈ C, the reduced suspension and loop space, when
they exist, are given by

Z 0

0 ΣZ

y

ΩZ 0

0 Z

y

We have C(ΣX; Y) ∼= Ω(C(X; Y)) ∼= C(X;ΩY); so Σ ⊣ Ω.
In Set•, ΩZ ∼= 0.

Stability

Definition (Stable ∞-Category (Antoĺın-Camarena 2017))

A stable ∞-category is an ∞-category with finite limits and
colimits that commute.

Stability ∼ Equivalence (Lurie 2017, Proposition 1.4.2.11)

A stable ∞-category is a pointed ∞-category with pushouts and
pullbacks, where the Σ ⊣ Ω adjunction is an adjoint equivalence.
That is, where the unit and co-unit of the adjunction are
equivalences.

Stability ∼ Enrichment (Hillyard 2025, Remarks 4.21 and 4.22)

An ∞-category is stable iff
It is Spec-enriched and has Spec-enriched finite limits and
colimits.

Spec-enriched implies E∞-Space-enriched.

Why Cubical Type Theory?

• In HoTT, we have axioms funExt and ua.

• In Cubical Type Theory, we add new primitives from which
these can be proven, restoring computation.

• Axiom S in (Riley, Finster and Licata 2021) resembles ua.

Cubical Type Theory

• Reify paths as maps out of a formal interval I.
• Interval variables get their own section of the context.

• Interval term-formers: constants i0 and i1, and optionally the
connectives ∧, ∨, and ¬.

• Context section for formulas.

• Disjunction elimination and Kan composition.

Kan Composition

z = r

z = r ′

ffi ffi

b

t t

comz:r→r ′
A (ffi 7→ t)(b)

comz
′:r→z
A (ffi 7→ t[z ′=z])(b)

z

Ξ

Stable Type Theory

Stable Type Theory

Stable Type Theory is cubical type theory with type-formers for
finite limits and colimits, and E∞-space structure for every type.

We won’t have dependent types.
Consider p + p′ for p; p′ :

P
a:AB.

Näıvely, p + p′ ≡ (ı1(p) + ı1(p
′); ı2(p) + ı2(p

′)).
But ı2(p) : B[ı1(p)=a] and ı2(p

′) : B[ı1(p
′)=a];

So, this is ill-typed.

A Better Way?

Sum Term
∆ ⊢ ‚ : Γ ∆ ⊢ ‚′ : Γ Γ ⊢ A type

∆ ⊢ a : A[‚] ∆ ⊢ a′ : A[‚′]
∆ ⊢ a+ a′ : A[‚ + ‚′]

Stable Type Theory

Stable Type Theory

Stable Type Theory is cubical type theory with type-formers for
finite limits and colimits, and E∞-space structure for every type.

We won’t have dependent types.
Consider p + p′ for p; p′ :

P
a:AB.

Näıvely, p + p′ ≡ (ı1(p) + ı1(p
′); ı2(p) + ı2(p

′)).
But ı2(p) : B[ı1(p)=a] and ı2(p

′) : B[ı1(p
′)=a];

So, this is ill-typed.

A Better Way?

Sum Term
∆ ⊢ ‚ : Γ ∆ ⊢ ‚′ : Γ Γ ⊢ A type

∆ ⊢ a : A[‚] ∆ ⊢ a′ : A[‚′]
∆ ⊢ a+ a′ : A[‚ + ‚′]

Stable Type Theory

Stable Type Theory

Stable Type Theory is cubical type theory with type-formers for
finite limits and colimits, and E∞-space structure for every type.

We won’t have dependent types.
Consider p + p′ for p; p′ :

P
a:AB.

Näıvely, p + p′ ≡ (ı1(p) + ı1(p
′); ı2(p) + ı2(p

′)).
But ı2(p) : B[ı1(p)=a] and ı2(p

′) : B[ı1(p
′)=a];

So, this is ill-typed.

A Better Way?

Sum Term
∆ ⊢ ‚ : Γ ∆ ⊢ ‚′ : Γ Γ ⊢ A type

∆ ⊢ a : A[‚] ∆ ⊢ a′ : A[‚′]
∆ ⊢ a+ a′ : A[‚ + ‚′]

Enrichment

Every type has an E∞-space structure:

• For a type A, we have 0 : A;

• For terms a; b : A, we have a+ b : A;

• We have paths –, ȷ, ff, ¸ exhibiting that + is unital,
commutative and associative;

• We have higher paths forever exhibiting coherence of the
lower paths.

Every operation respects this structure:

• For a map f : A→ B, we have ‹0, ‹+ and so on exhibiting
that f preserves 0, + and so on;

• And ‹‹0 ...

These are rules, like Kan composition; not axioms.

Zero Type

• We have a type 0;

• We have a term ∗ : 0;

• For any term s : 0, we have s ≡ ∗;
• These are the usual rules for a negative unit type;

• As before, we can prove that 0 is initial.

Pullback Types

A ×
C
f gB A

B C

ı1

ı2

y

ı3
f

g

Behaves as
P

a:A

P
b:B PathC(f (a); g(b)).

Kan and enrichment operations are pointwise.

×-+

Ξ|Φ|Γ ⊢ p : A ×
C
f gB Ξ|Φ|Γ ⊢ q : A ×

C
f gB

Ξ|Φ|Γ ⊢ p + q ≡
`
ı1(p) + ı1(q);

ı2(p) + ı2(q);

x 7→ comz:i0→i1
C (

x = i0 7→ ‹z+(f ;ı1(p); ı1(q));

x = i1 7→ ‹z+(g ;ı2(p); ı2(q));

)(ıx3(p) + ıx3(q))
´
: A ×

C
f gB

Pushout Types

C A

B A ⊔
C
f gB

f

g «3 «1

«2

y

Kan and enrichment operations are formal,
And the eliminator preserves them.

match p {
«1(a) 7→ s;

«2(b) 7→ t;

«x3(c) 7→ u;

p′ if ffi 7→ v;

}

Pushout Types

C A

B A ⊔
C
f gB

f

g «3 «1

«2

y

Kan and enrichment operations are formal,
And the eliminator preserves them.

match p {
«1(a) 7→ s;

«2(b) 7→ t;

«x3(c) 7→ u;

p′ if ffi 7→ v;

}

Special Cases

ΣA ≡ 0 ⊔
A

0 00 ΩA ≡ 0 ×
A

0 00

A+ B ≡ A ⊔
0

0 0B A× B ≡ A ×
0

0 0B

When we introduce or eliminate these, we can omit terms that we
know must be zero.

Biproducts

For types A and B, we get a map : A+ B → A× B given by

 (p) ≡ match p {
«1(a) 7→ (a; 0);

«2(b) 7→ (0; b);

}

»
idA 0
0 idB

–

We want to show that this map is an equivalence.
Our proposed inverse is ffi : A× B → A+ B given by

ffi(p) ≡ «1(ı1(p)) + «2(ı2(p))

»
idA 0
0 0

–
+

»
0 0
0 idB

–

With the eliminator for +, we can prove that these are indeed
mutually inverse.

Deriving Stability

Theorem (Cube of Pullbacks (Rijke 2019, Theorem 2.2.12))

A111

A101

A110 A011

A100 A001

A010

A000

f121

f112 f211

y y

H221

f102 f201

H122

H212

f120

f210

y f021

f012

y
H202

H220

f200 f002

H022

f020

C222

A110 ⊔A111 A011 A010

A100 ⊔A101 A001 A000

T

F
y

G
f020

B

Deriving Stability

ΩA

0

0 0

A A

A

A× A

r 7→ı¬r
3 ı3

ı3

0

(idA;0) (0;idA)

0 0

(idA;idA)

C222

ΣΩA A

A+ A A× A

"

F
y

G
(idA;idA)

We have an equivalence; so " is an equivalence.
Apply Little Blakers-Massey Theorem to get ” an equivalence.

Problem with Cube of Pullbacks

Non-Theorem!

While Cube of Pullbacks is provable in HoTT,
We can’t prove it in StabTT with our eliminator for pushout.

Future Work

• Strengthen eliminator for pushout and prove the cube
theorem.

• Prove Little Blakers-Massey Theorem to get ” an equivalence.

Conjecture

Stable type theory is the internal language for stable ∞-categories.

• Add smash product, and Σ∞ and Ω∞.

• Simplify the higher coherators. (A ≃ ΩΣA)

Bibliography

Antoĺın-Camarena, Omar (2017). What are all of the exactness
properties enjoyed by stable ∞-categories? MathOverflow. url:
https://mathoverflow.net/q/267265.

Hillyard, Reuben (2025). ‘Towards Cubical Type Theory for
Synthetic Stable ∞-Category Theory’. MMath thesis.
University of Oxford.

Lurie, Jacob (2017). Higher Algebra. Harvard University.

Malkiewich, Cary (2023). ‘Spectra and stable homotopy
theory’.

Rijke, Egbert (2019). Classifying Types. arXiv: 1906.09435
[math.LO]. url: https://arxiv.org/abs/1906.09435.

Riley, Mitchell, Eric Finster and Daniel R. Licata (2021).
Synthetic Spectra via a Monadic and Comonadic Modality.
arXiv: 2102.04099 [math.CT]. url:
https://arxiv.org/abs/2102.04099.

https://mathoverflow.net/q/267265
https://arxiv.org/abs/1906.09435
https://arxiv.org/abs/1906.09435
https://arxiv.org/abs/1906.09435
https://arxiv.org/abs/2102.04099
https://arxiv.org/abs/2102.04099

	References

